Loading…

Multifractal and mechanical analysis of amorphous solid dispersions

[Display omitted] The formulation of lipophilic and hydrophobic compounds is a challenge for the pharmaceutical industry and it requires the development of complex formulations. Our first aim was to investigate hot-melt extrudate microstructures by means of multifractal analysis using scanning elect...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics 2017-05, Vol.523 (1), p.91-101
Main Authors: Adler, Camille, Teleki, Alexandra, Kuentz, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] The formulation of lipophilic and hydrophobic compounds is a challenge for the pharmaceutical industry and it requires the development of complex formulations. Our first aim was to investigate hot-melt extrudate microstructures by means of multifractal analysis using scanning electron microscopy imaging. Since the microstructure can affect solid dosage form performance such as mechanical properties, a second objective was to study the influence of the type of adsorbent and of the presence of an amorphous compound on extrudate hardness. β-Carotene (BC) was chosen as poorly water-soluble model compound. Formulations containing a polymer, a lipid and two different silica based inorganic carriers were produced by hot-melt extrusion. Based on scanning electron microscopy/energy dispersive X-ray spectroscopy, the obtained images were analyzed using multifractal formalism. The breaking force of the strands was assessed by a three point bending test. Multifractal analysis and three point bending results showed that the nature of interparticle interactions in the inorganic carrier as well as the presence of amorphous BC had an influence on the microstructure and thus on the mechanical performance. The use of multifractal analysis and the study of the mechanical properties were complementary to better characterize and understand complex formulations obtained by hot-melt extrusion.
ISSN:0378-5173
1873-3476
1873-3476
DOI:10.1016/j.ijpharm.2017.03.014