Loading…

Stability of Ar(H₂)₂ to 358 GPa

“Chemical precompression” through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H₂)₂, a hydrogen-rich compound with molecular hydrogen, to explore the effect of “doping” on the intermolecula...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-04, Vol.114 (14), p.3596-3600
Main Authors: Ji, Cheng, Goncharov, Alexander F., Shukla, Vivekanand, Jena, Naresh K., Popov, Dmitry, Li, Bing, Wang, Junyue, Meng, Yue, Prakapenka, Vitali B., Smith, Jesse S., Ahuja, Rajeev, Yang, Wenge, Mao, Ho-kwang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3
cites cdi_FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3
container_end_page 3600
container_issue 14
container_start_page 3596
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Ji, Cheng
Goncharov, Alexander F.
Shukla, Vivekanand
Jena, Naresh K.
Popov, Dmitry
Li, Bing
Wang, Junyue
Meng, Yue
Prakapenka, Vitali B.
Smith, Jesse S.
Ahuja, Rajeev
Yang, Wenge
Mao, Ho-kwang
description “Chemical precompression” through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H₂)₂, a hydrogen-rich compound with molecular hydrogen, to explore the effect of “doping” on the intermolecular interaction of H₂ molecules and metallization at ultrahigh pressure. Ar(H₂)₂ was studied experimentally by synchrotron X-ray diffraction to 265 GPa, by Raman and optical absorption spectroscopy to 358 GPa, and theoretically using the density-functional theory. Our measurements of the optical bandgap and the vibron frequency show that Ar(H₂)₂ retains 2-eV bandgap and H₂ molecular units up to 358 GPa. This is attributed to reduced intermolecular interactions between H₂ molecules in Ar(H₂)₂ compared with that in solid H₂. A splitting of the molecular vibron mode above 216 GPa suggests an orientational ordering transition, which is not accompanied by a change in lattice symmetry. The experimental and theoretical equations of state of Ar(H₂)₂ provide direct insight into the structure and bonding of this hydrogen-rich system, suggesting a negative chemical pressure on H₂ molecules brought about by doping of Ar.
doi_str_mv 10.1073/pnas.1700049114
format article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_320633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480667</jstor_id><sourcerecordid>26480667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3</originalsourceid><addsrcrecordid>eNpV0U1PHSEUBmDS2NSrde1KM6kbm3T0AMMAmyY3tlUTkzap7ZYwDChm7nALTBu3_tT-kmLG-rEgLM5zDoe8CO1iOMLA6fF61OkIcwBoJMbNK7TAIHHdNhI20AKA8Fo0pNlEWyndFCWZgDdokwgiJMFigQ6-Z935wefbKrhqGQ_P_t7dvS-nyqGiTFSn3_Rb9NrpIdmdh3sb_fjy-fLkrL74enp-sryoTcNlrp3R2jlwFCwAAy1pTx0ljOmuwxKsFr3orLUEetb1jkHPmaM97mxPeGmi2-jDPDf9seupU-voVzreqqC9-uR_LlWIV2qaFCXQUlr4x5kXu7K9sWOOenjR9bIy-mt1FX4rRoWklJUB7-YBIWWvkvHZmmsTxtGarHBDmOC8oMOHV2L4NdmU1conY4dBjzZMSeGCGGkJkYUez9TEkFK07nEXDOo-LnUfl3qKq3TsP__Co_-fTwF7M7hJOcSnetsIaFtO_wHahpqv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877526229</pqid></control><display><type>article</type><title>Stability of Ar(H₂)₂ to 358 GPa</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Ji, Cheng ; Goncharov, Alexander F. ; Shukla, Vivekanand ; Jena, Naresh K. ; Popov, Dmitry ; Li, Bing ; Wang, Junyue ; Meng, Yue ; Prakapenka, Vitali B. ; Smith, Jesse S. ; Ahuja, Rajeev ; Yang, Wenge ; Mao, Ho-kwang</creator><creatorcontrib>Ji, Cheng ; Goncharov, Alexander F. ; Shukla, Vivekanand ; Jena, Naresh K. ; Popov, Dmitry ; Li, Bing ; Wang, Junyue ; Meng, Yue ; Prakapenka, Vitali B. ; Smith, Jesse S. ; Ahuja, Rajeev ; Yang, Wenge ; Mao, Ho-kwang ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) ; THE UNIVERSITY OF CHICAGO ; Carnegie Inst. of Washington, Washington, DC (United States)</creatorcontrib><description>“Chemical precompression” through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H₂)₂, a hydrogen-rich compound with molecular hydrogen, to explore the effect of “doping” on the intermolecular interaction of H₂ molecules and metallization at ultrahigh pressure. Ar(H₂)₂ was studied experimentally by synchrotron X-ray diffraction to 265 GPa, by Raman and optical absorption spectroscopy to 358 GPa, and theoretically using the density-functional theory. Our measurements of the optical bandgap and the vibron frequency show that Ar(H₂)₂ retains 2-eV bandgap and H₂ molecular units up to 358 GPa. This is attributed to reduced intermolecular interactions between H₂ molecules in Ar(H₂)₂ compared with that in solid H₂. A splitting of the molecular vibron mode above 216 GPa suggests an orientational ordering transition, which is not accompanied by a change in lattice symmetry. The experimental and theoretical equations of state of Ar(H₂)₂ provide direct insight into the structure and bonding of this hydrogen-rich system, suggesting a negative chemical pressure on H₂ molecules brought about by doping of Ar.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1700049114</identifier><identifier>PMID: 28289218</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>hydrogen-rich compound ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; intermolecular interaction ; metallization ; Physical Sciences ; ultrahigh pressure</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-04, Vol.114 (14), p.3596-3600</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3</citedby><cites>FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480667$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480667$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28289218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1425877$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-320633$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Cheng</creatorcontrib><creatorcontrib>Goncharov, Alexander F.</creatorcontrib><creatorcontrib>Shukla, Vivekanand</creatorcontrib><creatorcontrib>Jena, Naresh K.</creatorcontrib><creatorcontrib>Popov, Dmitry</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Wang, Junyue</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Prakapenka, Vitali B.</creatorcontrib><creatorcontrib>Smith, Jesse S.</creatorcontrib><creatorcontrib>Ahuja, Rajeev</creatorcontrib><creatorcontrib>Yang, Wenge</creatorcontrib><creatorcontrib>Mao, Ho-kwang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><creatorcontrib>THE UNIVERSITY OF CHICAGO</creatorcontrib><creatorcontrib>Carnegie Inst. of Washington, Washington, DC (United States)</creatorcontrib><title>Stability of Ar(H₂)₂ to 358 GPa</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>“Chemical precompression” through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H₂)₂, a hydrogen-rich compound with molecular hydrogen, to explore the effect of “doping” on the intermolecular interaction of H₂ molecules and metallization at ultrahigh pressure. Ar(H₂)₂ was studied experimentally by synchrotron X-ray diffraction to 265 GPa, by Raman and optical absorption spectroscopy to 358 GPa, and theoretically using the density-functional theory. Our measurements of the optical bandgap and the vibron frequency show that Ar(H₂)₂ retains 2-eV bandgap and H₂ molecular units up to 358 GPa. This is attributed to reduced intermolecular interactions between H₂ molecules in Ar(H₂)₂ compared with that in solid H₂. A splitting of the molecular vibron mode above 216 GPa suggests an orientational ordering transition, which is not accompanied by a change in lattice symmetry. The experimental and theoretical equations of state of Ar(H₂)₂ provide direct insight into the structure and bonding of this hydrogen-rich system, suggesting a negative chemical pressure on H₂ molecules brought about by doping of Ar.</description><subject>hydrogen-rich compound</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>intermolecular interaction</subject><subject>metallization</subject><subject>Physical Sciences</subject><subject>ultrahigh pressure</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpV0U1PHSEUBmDS2NSrde1KM6kbm3T0AMMAmyY3tlUTkzap7ZYwDChm7nALTBu3_tT-kmLG-rEgLM5zDoe8CO1iOMLA6fF61OkIcwBoJMbNK7TAIHHdNhI20AKA8Fo0pNlEWyndFCWZgDdokwgiJMFigQ6-Z935wefbKrhqGQ_P_t7dvS-nyqGiTFSn3_Rb9NrpIdmdh3sb_fjy-fLkrL74enp-sryoTcNlrp3R2jlwFCwAAy1pTx0ljOmuwxKsFr3orLUEetb1jkHPmaM97mxPeGmi2-jDPDf9seupU-voVzreqqC9-uR_LlWIV2qaFCXQUlr4x5kXu7K9sWOOenjR9bIy-mt1FX4rRoWklJUB7-YBIWWvkvHZmmsTxtGarHBDmOC8oMOHV2L4NdmU1conY4dBjzZMSeGCGGkJkYUez9TEkFK07nEXDOo-LnUfl3qKq3TsP__Co_-fTwF7M7hJOcSnetsIaFtO_wHahpqv</recordid><startdate>20170404</startdate><enddate>20170404</enddate><creator>Ji, Cheng</creator><creator>Goncharov, Alexander F.</creator><creator>Shukla, Vivekanand</creator><creator>Jena, Naresh K.</creator><creator>Popov, Dmitry</creator><creator>Li, Bing</creator><creator>Wang, Junyue</creator><creator>Meng, Yue</creator><creator>Prakapenka, Vitali B.</creator><creator>Smith, Jesse S.</creator><creator>Ahuja, Rajeev</creator><creator>Yang, Wenge</creator><creator>Mao, Ho-kwang</creator><general>National Academy of Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20170404</creationdate><title>Stability of Ar(H₂)₂ to 358 GPa</title><author>Ji, Cheng ; Goncharov, Alexander F. ; Shukla, Vivekanand ; Jena, Naresh K. ; Popov, Dmitry ; Li, Bing ; Wang, Junyue ; Meng, Yue ; Prakapenka, Vitali B. ; Smith, Jesse S. ; Ahuja, Rajeev ; Yang, Wenge ; Mao, Ho-kwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>hydrogen-rich compound</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>intermolecular interaction</topic><topic>metallization</topic><topic>Physical Sciences</topic><topic>ultrahigh pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Cheng</creatorcontrib><creatorcontrib>Goncharov, Alexander F.</creatorcontrib><creatorcontrib>Shukla, Vivekanand</creatorcontrib><creatorcontrib>Jena, Naresh K.</creatorcontrib><creatorcontrib>Popov, Dmitry</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Wang, Junyue</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Prakapenka, Vitali B.</creatorcontrib><creatorcontrib>Smith, Jesse S.</creatorcontrib><creatorcontrib>Ahuja, Rajeev</creatorcontrib><creatorcontrib>Yang, Wenge</creatorcontrib><creatorcontrib>Mao, Ho-kwang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><creatorcontrib>THE UNIVERSITY OF CHICAGO</creatorcontrib><creatorcontrib>Carnegie Inst. of Washington, Washington, DC (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Cheng</au><au>Goncharov, Alexander F.</au><au>Shukla, Vivekanand</au><au>Jena, Naresh K.</au><au>Popov, Dmitry</au><au>Li, Bing</au><au>Wang, Junyue</au><au>Meng, Yue</au><au>Prakapenka, Vitali B.</au><au>Smith, Jesse S.</au><au>Ahuja, Rajeev</au><au>Yang, Wenge</au><au>Mao, Ho-kwang</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><aucorp>THE UNIVERSITY OF CHICAGO</aucorp><aucorp>Carnegie Inst. of Washington, Washington, DC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Ar(H₂)₂ to 358 GPa</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-04-04</date><risdate>2017</risdate><volume>114</volume><issue>14</issue><spage>3596</spage><epage>3600</epage><pages>3596-3600</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>“Chemical precompression” through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H₂)₂, a hydrogen-rich compound with molecular hydrogen, to explore the effect of “doping” on the intermolecular interaction of H₂ molecules and metallization at ultrahigh pressure. Ar(H₂)₂ was studied experimentally by synchrotron X-ray diffraction to 265 GPa, by Raman and optical absorption spectroscopy to 358 GPa, and theoretically using the density-functional theory. Our measurements of the optical bandgap and the vibron frequency show that Ar(H₂)₂ retains 2-eV bandgap and H₂ molecular units up to 358 GPa. This is attributed to reduced intermolecular interactions between H₂ molecules in Ar(H₂)₂ compared with that in solid H₂. A splitting of the molecular vibron mode above 216 GPa suggests an orientational ordering transition, which is not accompanied by a change in lattice symmetry. The experimental and theoretical equations of state of Ar(H₂)₂ provide direct insight into the structure and bonding of this hydrogen-rich system, suggesting a negative chemical pressure on H₂ molecules brought about by doping of Ar.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28289218</pmid><doi>10.1073/pnas.1700049114</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-04, Vol.114 (14), p.3596-3600
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_320633
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects hydrogen-rich compound
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
intermolecular interaction
metallization
Physical Sciences
ultrahigh pressure
title Stability of Ar(H₂)₂ to 358 GPa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Ar(H%E2%82%82)%E2%82%82%20to%20358%20GPa&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ji,%20Cheng&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2017-04-04&rft.volume=114&rft.issue=14&rft.spage=3596&rft.epage=3600&rft.pages=3596-3600&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1700049114&rft_dat=%3Cjstor_swepu%3E26480667%3C/jstor_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1877526229&rft_id=info:pmid/28289218&rft_jstor_id=26480667&rfr_iscdi=true