Loading…
Stability of Ar(H₂)₂ to 358 GPa
“Chemical precompression” through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H₂)₂, a hydrogen-rich compound with molecular hydrogen, to explore the effect of “doping” on the intermolecula...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2017-04, Vol.114 (14), p.3596-3600 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3 |
container_end_page | 3600 |
container_issue | 14 |
container_start_page | 3596 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Ji, Cheng Goncharov, Alexander F. Shukla, Vivekanand Jena, Naresh K. Popov, Dmitry Li, Bing Wang, Junyue Meng, Yue Prakapenka, Vitali B. Smith, Jesse S. Ahuja, Rajeev Yang, Wenge Mao, Ho-kwang |
description | “Chemical precompression” through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H₂)₂, a hydrogen-rich compound with molecular hydrogen, to explore the effect of “doping” on the intermolecular interaction of H₂ molecules and metallization at ultrahigh pressure. Ar(H₂)₂ was studied experimentally by synchrotron X-ray diffraction to 265 GPa, by Raman and optical absorption spectroscopy to 358 GPa, and theoretically using the density-functional theory. Our measurements of the optical bandgap and the vibron frequency show that Ar(H₂)₂ retains 2-eV bandgap and H₂ molecular units up to 358 GPa. This is attributed to reduced intermolecular interactions between H₂ molecules in Ar(H₂)₂ compared with that in solid H₂. A splitting of the molecular vibron mode above 216 GPa suggests an orientational ordering transition, which is not accompanied by a change in lattice symmetry. The experimental and theoretical equations of state of Ar(H₂)₂ provide direct insight into the structure and bonding of this hydrogen-rich system, suggesting a negative chemical pressure on H₂ molecules brought about by doping of Ar. |
doi_str_mv | 10.1073/pnas.1700049114 |
format | article |
fullrecord | <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_320633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480667</jstor_id><sourcerecordid>26480667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3</originalsourceid><addsrcrecordid>eNpV0U1PHSEUBmDS2NSrde1KM6kbm3T0AMMAmyY3tlUTkzap7ZYwDChm7nALTBu3_tT-kmLG-rEgLM5zDoe8CO1iOMLA6fF61OkIcwBoJMbNK7TAIHHdNhI20AKA8Fo0pNlEWyndFCWZgDdokwgiJMFigQ6-Z935wefbKrhqGQ_P_t7dvS-nyqGiTFSn3_Rb9NrpIdmdh3sb_fjy-fLkrL74enp-sryoTcNlrp3R2jlwFCwAAy1pTx0ljOmuwxKsFr3orLUEetb1jkHPmaM97mxPeGmi2-jDPDf9seupU-voVzreqqC9-uR_LlWIV2qaFCXQUlr4x5kXu7K9sWOOenjR9bIy-mt1FX4rRoWklJUB7-YBIWWvkvHZmmsTxtGarHBDmOC8oMOHV2L4NdmU1conY4dBjzZMSeGCGGkJkYUez9TEkFK07nEXDOo-LnUfl3qKq3TsP__Co_-fTwF7M7hJOcSnetsIaFtO_wHahpqv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877526229</pqid></control><display><type>article</type><title>Stability of Ar(H₂)₂ to 358 GPa</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Ji, Cheng ; Goncharov, Alexander F. ; Shukla, Vivekanand ; Jena, Naresh K. ; Popov, Dmitry ; Li, Bing ; Wang, Junyue ; Meng, Yue ; Prakapenka, Vitali B. ; Smith, Jesse S. ; Ahuja, Rajeev ; Yang, Wenge ; Mao, Ho-kwang</creator><creatorcontrib>Ji, Cheng ; Goncharov, Alexander F. ; Shukla, Vivekanand ; Jena, Naresh K. ; Popov, Dmitry ; Li, Bing ; Wang, Junyue ; Meng, Yue ; Prakapenka, Vitali B. ; Smith, Jesse S. ; Ahuja, Rajeev ; Yang, Wenge ; Mao, Ho-kwang ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) ; THE UNIVERSITY OF CHICAGO ; Carnegie Inst. of Washington, Washington, DC (United States)</creatorcontrib><description>“Chemical precompression” through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H₂)₂, a hydrogen-rich compound with molecular hydrogen, to explore the effect of “doping” on the intermolecular interaction of H₂ molecules and metallization at ultrahigh pressure. Ar(H₂)₂ was studied experimentally by synchrotron X-ray diffraction to 265 GPa, by Raman and optical absorption spectroscopy to 358 GPa, and theoretically using the density-functional theory. Our measurements of the optical bandgap and the vibron frequency show that Ar(H₂)₂ retains 2-eV bandgap and H₂ molecular units up to 358 GPa. This is attributed to reduced intermolecular interactions between H₂ molecules in Ar(H₂)₂ compared with that in solid H₂. A splitting of the molecular vibron mode above 216 GPa suggests an orientational ordering transition, which is not accompanied by a change in lattice symmetry. The experimental and theoretical equations of state of Ar(H₂)₂ provide direct insight into the structure and bonding of this hydrogen-rich system, suggesting a negative chemical pressure on H₂ molecules brought about by doping of Ar.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1700049114</identifier><identifier>PMID: 28289218</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>hydrogen-rich compound ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; intermolecular interaction ; metallization ; Physical Sciences ; ultrahigh pressure</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-04, Vol.114 (14), p.3596-3600</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3</citedby><cites>FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480667$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480667$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28289218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1425877$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-320633$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Cheng</creatorcontrib><creatorcontrib>Goncharov, Alexander F.</creatorcontrib><creatorcontrib>Shukla, Vivekanand</creatorcontrib><creatorcontrib>Jena, Naresh K.</creatorcontrib><creatorcontrib>Popov, Dmitry</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Wang, Junyue</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Prakapenka, Vitali B.</creatorcontrib><creatorcontrib>Smith, Jesse S.</creatorcontrib><creatorcontrib>Ahuja, Rajeev</creatorcontrib><creatorcontrib>Yang, Wenge</creatorcontrib><creatorcontrib>Mao, Ho-kwang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><creatorcontrib>THE UNIVERSITY OF CHICAGO</creatorcontrib><creatorcontrib>Carnegie Inst. of Washington, Washington, DC (United States)</creatorcontrib><title>Stability of Ar(H₂)₂ to 358 GPa</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>“Chemical precompression” through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H₂)₂, a hydrogen-rich compound with molecular hydrogen, to explore the effect of “doping” on the intermolecular interaction of H₂ molecules and metallization at ultrahigh pressure. Ar(H₂)₂ was studied experimentally by synchrotron X-ray diffraction to 265 GPa, by Raman and optical absorption spectroscopy to 358 GPa, and theoretically using the density-functional theory. Our measurements of the optical bandgap and the vibron frequency show that Ar(H₂)₂ retains 2-eV bandgap and H₂ molecular units up to 358 GPa. This is attributed to reduced intermolecular interactions between H₂ molecules in Ar(H₂)₂ compared with that in solid H₂. A splitting of the molecular vibron mode above 216 GPa suggests an orientational ordering transition, which is not accompanied by a change in lattice symmetry. The experimental and theoretical equations of state of Ar(H₂)₂ provide direct insight into the structure and bonding of this hydrogen-rich system, suggesting a negative chemical pressure on H₂ molecules brought about by doping of Ar.</description><subject>hydrogen-rich compound</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>intermolecular interaction</subject><subject>metallization</subject><subject>Physical Sciences</subject><subject>ultrahigh pressure</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpV0U1PHSEUBmDS2NSrde1KM6kbm3T0AMMAmyY3tlUTkzap7ZYwDChm7nALTBu3_tT-kmLG-rEgLM5zDoe8CO1iOMLA6fF61OkIcwBoJMbNK7TAIHHdNhI20AKA8Fo0pNlEWyndFCWZgDdokwgiJMFigQ6-Z935wefbKrhqGQ_P_t7dvS-nyqGiTFSn3_Rb9NrpIdmdh3sb_fjy-fLkrL74enp-sryoTcNlrp3R2jlwFCwAAy1pTx0ljOmuwxKsFr3orLUEetb1jkHPmaM97mxPeGmi2-jDPDf9seupU-voVzreqqC9-uR_LlWIV2qaFCXQUlr4x5kXu7K9sWOOenjR9bIy-mt1FX4rRoWklJUB7-YBIWWvkvHZmmsTxtGarHBDmOC8oMOHV2L4NdmU1conY4dBjzZMSeGCGGkJkYUez9TEkFK07nEXDOo-LnUfl3qKq3TsP__Co_-fTwF7M7hJOcSnetsIaFtO_wHahpqv</recordid><startdate>20170404</startdate><enddate>20170404</enddate><creator>Ji, Cheng</creator><creator>Goncharov, Alexander F.</creator><creator>Shukla, Vivekanand</creator><creator>Jena, Naresh K.</creator><creator>Popov, Dmitry</creator><creator>Li, Bing</creator><creator>Wang, Junyue</creator><creator>Meng, Yue</creator><creator>Prakapenka, Vitali B.</creator><creator>Smith, Jesse S.</creator><creator>Ahuja, Rajeev</creator><creator>Yang, Wenge</creator><creator>Mao, Ho-kwang</creator><general>National Academy of Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20170404</creationdate><title>Stability of Ar(H₂)₂ to 358 GPa</title><author>Ji, Cheng ; Goncharov, Alexander F. ; Shukla, Vivekanand ; Jena, Naresh K. ; Popov, Dmitry ; Li, Bing ; Wang, Junyue ; Meng, Yue ; Prakapenka, Vitali B. ; Smith, Jesse S. ; Ahuja, Rajeev ; Yang, Wenge ; Mao, Ho-kwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>hydrogen-rich compound</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>intermolecular interaction</topic><topic>metallization</topic><topic>Physical Sciences</topic><topic>ultrahigh pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Cheng</creatorcontrib><creatorcontrib>Goncharov, Alexander F.</creatorcontrib><creatorcontrib>Shukla, Vivekanand</creatorcontrib><creatorcontrib>Jena, Naresh K.</creatorcontrib><creatorcontrib>Popov, Dmitry</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Wang, Junyue</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Prakapenka, Vitali B.</creatorcontrib><creatorcontrib>Smith, Jesse S.</creatorcontrib><creatorcontrib>Ahuja, Rajeev</creatorcontrib><creatorcontrib>Yang, Wenge</creatorcontrib><creatorcontrib>Mao, Ho-kwang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><creatorcontrib>THE UNIVERSITY OF CHICAGO</creatorcontrib><creatorcontrib>Carnegie Inst. of Washington, Washington, DC (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Cheng</au><au>Goncharov, Alexander F.</au><au>Shukla, Vivekanand</au><au>Jena, Naresh K.</au><au>Popov, Dmitry</au><au>Li, Bing</au><au>Wang, Junyue</au><au>Meng, Yue</au><au>Prakapenka, Vitali B.</au><au>Smith, Jesse S.</au><au>Ahuja, Rajeev</au><au>Yang, Wenge</au><au>Mao, Ho-kwang</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><aucorp>THE UNIVERSITY OF CHICAGO</aucorp><aucorp>Carnegie Inst. of Washington, Washington, DC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Ar(H₂)₂ to 358 GPa</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-04-04</date><risdate>2017</risdate><volume>114</volume><issue>14</issue><spage>3596</spage><epage>3600</epage><pages>3596-3600</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>“Chemical precompression” through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H₂)₂, a hydrogen-rich compound with molecular hydrogen, to explore the effect of “doping” on the intermolecular interaction of H₂ molecules and metallization at ultrahigh pressure. Ar(H₂)₂ was studied experimentally by synchrotron X-ray diffraction to 265 GPa, by Raman and optical absorption spectroscopy to 358 GPa, and theoretically using the density-functional theory. Our measurements of the optical bandgap and the vibron frequency show that Ar(H₂)₂ retains 2-eV bandgap and H₂ molecular units up to 358 GPa. This is attributed to reduced intermolecular interactions between H₂ molecules in Ar(H₂)₂ compared with that in solid H₂. A splitting of the molecular vibron mode above 216 GPa suggests an orientational ordering transition, which is not accompanied by a change in lattice symmetry. The experimental and theoretical equations of state of Ar(H₂)₂ provide direct insight into the structure and bonding of this hydrogen-rich system, suggesting a negative chemical pressure on H₂ molecules brought about by doping of Ar.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28289218</pmid><doi>10.1073/pnas.1700049114</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-04, Vol.114 (14), p.3596-3600 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_320633 |
source | PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection |
subjects | hydrogen-rich compound INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY intermolecular interaction metallization Physical Sciences ultrahigh pressure |
title | Stability of Ar(H₂)₂ to 358 GPa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Ar(H%E2%82%82)%E2%82%82%20to%20358%20GPa&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ji,%20Cheng&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2017-04-04&rft.volume=114&rft.issue=14&rft.spage=3596&rft.epage=3600&rft.pages=3596-3600&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1700049114&rft_dat=%3Cjstor_swepu%3E26480667%3C/jstor_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-fcaaff0f30e0050a93d3f3255abb190ea8d8beee20d5bdf50d75f3d1bed2730e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1877526229&rft_id=info:pmid/28289218&rft_jstor_id=26480667&rfr_iscdi=true |