Loading…
The processive kinetics of gene conversion in bacteria
Summary Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it p...
Saved in:
Published in: | Molecular microbiology 2017-06, Vol.104 (5), p.752-760 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473 |
---|---|
cites | cdi_FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473 |
container_end_page | 760 |
container_issue | 5 |
container_start_page | 752 |
container_title | Molecular microbiology |
container_volume | 104 |
creator | Paulsson, Johan El Karoui, Meriem Lindell, Monica Hughes, Diarmaid |
description | Summary
Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene.
Gene conversion is a major force in evolutionary dynamics, promoting co‐evolution in gene families. However, the properties of conversion – where it initiates, how far it proceeds, and how the resulting conversion tracts are affected by mismatch repair – have not been quantified. Our analysis suggests that gene conversion can initiate uniformly at any position within a gene, and proceed with a high uniform processivity in either direction limited by the bounds of the gene. |
doi_str_mv | 10.1111/mmi.13661 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_327241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1874444642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473</originalsourceid><addsrcrecordid>eNp1kU1LHTEUhoNY9Na68A-UATcWHM13JhtB7JegdGNLdyE3c-YaO5NckztX_PeNjhUVejZnkScPL-dFaI_gI1LmeBj8EWFSkg00K1vUVItmE82wFrhmDf29jd7nfIMxYViyLbRNGyqkatgMyatrqJYpOsjZr6H64wOsvMtV7KoFBKhcDGtI2cdQ-VDNrVtB8vYDetfZPsPu095BP79-uTr7Xl_8-HZ-dnpRO95gUsOcgpozLkgLhCmMaQfUOay5Y7pVjGuMu45xYgVYLai0VqmWthik7TRXbAcdTt58B8txbpbJDzbdm2i9-ex_nZqYFmYcDaOKclLwkwkv7ACtg7BKtn_16_VL8NdmEddG8EYQqYvg4EmQ4u0IeWUGnx30vQ0Qx2xIo3gZyWlB99-gN3FMoVzDEI2JIAKrh0SfJsqlmHOC7jkMweahPFPKM4_lFfbjy_TP5L-2CnA8AXe-h_v_m8zl5fmk_Auv1qMW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901515071</pqid></control><display><type>article</type><title>The processive kinetics of gene conversion in bacteria</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Paulsson, Johan ; El Karoui, Meriem ; Lindell, Monica ; Hughes, Diarmaid</creator><creatorcontrib>Paulsson, Johan ; El Karoui, Meriem ; Lindell, Monica ; Hughes, Diarmaid</creatorcontrib><description>Summary
Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene.
Gene conversion is a major force in evolutionary dynamics, promoting co‐evolution in gene families. However, the properties of conversion – where it initiates, how far it proceeds, and how the resulting conversion tracts are affected by mismatch repair – have not been quantified. Our analysis suggests that gene conversion can initiate uniformly at any position within a gene, and proceed with a high uniform processivity in either direction limited by the bounds of the gene.</description><identifier>ISSN: 0950-382X</identifier><identifier>ISSN: 1365-2958</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.13661</identifier><identifier>PMID: 28256783</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacteria ; Bacteria - genetics ; Bacterial Proteins - genetics ; Biological Evolution ; Conversion ; DNA Mismatch Repair ; DNA Repair ; Evolutionary genetics ; Gene Conversion ; Gene duplication ; Gene families ; Genes ; Genetic recombination ; Homology ; Kinetics ; Microbiology ; Mismatch repair ; Models, Genetic ; Mutation ; Peptide Elongation Factor Tu - genetics ; Repair ; Salmonella ; Salmonella - genetics ; Stochastic models ; Tuf gene ; Yeast</subject><ispartof>Molecular microbiology, 2017-06, Vol.104 (5), p.752-760</ispartof><rights>2017 The Authors. Published by John Wiley & Sons Ltd</rights><rights>2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.</rights><rights>2017 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473</citedby><cites>FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473</cites><orcidid>0000-0002-7456-9182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28256783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-327241$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulsson, Johan</creatorcontrib><creatorcontrib>El Karoui, Meriem</creatorcontrib><creatorcontrib>Lindell, Monica</creatorcontrib><creatorcontrib>Hughes, Diarmaid</creatorcontrib><title>The processive kinetics of gene conversion in bacteria</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene.
Gene conversion is a major force in evolutionary dynamics, promoting co‐evolution in gene families. However, the properties of conversion – where it initiates, how far it proceeds, and how the resulting conversion tracts are affected by mismatch repair – have not been quantified. Our analysis suggests that gene conversion can initiate uniformly at any position within a gene, and proceed with a high uniform processivity in either direction limited by the bounds of the gene.</description><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological Evolution</subject><subject>Conversion</subject><subject>DNA Mismatch Repair</subject><subject>DNA Repair</subject><subject>Evolutionary genetics</subject><subject>Gene Conversion</subject><subject>Gene duplication</subject><subject>Gene families</subject><subject>Genes</subject><subject>Genetic recombination</subject><subject>Homology</subject><subject>Kinetics</subject><subject>Microbiology</subject><subject>Mismatch repair</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Peptide Elongation Factor Tu - genetics</subject><subject>Repair</subject><subject>Salmonella</subject><subject>Salmonella - genetics</subject><subject>Stochastic models</subject><subject>Tuf gene</subject><subject>Yeast</subject><issn>0950-382X</issn><issn>1365-2958</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1LHTEUhoNY9Na68A-UATcWHM13JhtB7JegdGNLdyE3c-YaO5NckztX_PeNjhUVejZnkScPL-dFaI_gI1LmeBj8EWFSkg00K1vUVItmE82wFrhmDf29jd7nfIMxYViyLbRNGyqkatgMyatrqJYpOsjZr6H64wOsvMtV7KoFBKhcDGtI2cdQ-VDNrVtB8vYDetfZPsPu095BP79-uTr7Xl_8-HZ-dnpRO95gUsOcgpozLkgLhCmMaQfUOay5Y7pVjGuMu45xYgVYLai0VqmWthik7TRXbAcdTt58B8txbpbJDzbdm2i9-ex_nZqYFmYcDaOKclLwkwkv7ACtg7BKtn_16_VL8NdmEddG8EYQqYvg4EmQ4u0IeWUGnx30vQ0Qx2xIo3gZyWlB99-gN3FMoVzDEI2JIAKrh0SfJsqlmHOC7jkMweahPFPKM4_lFfbjy_TP5L-2CnA8AXe-h_v_m8zl5fmk_Auv1qMW</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Paulsson, Johan</creator><creator>El Karoui, Meriem</creator><creator>Lindell, Monica</creator><creator>Hughes, Diarmaid</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-7456-9182</orcidid></search><sort><creationdate>201706</creationdate><title>The processive kinetics of gene conversion in bacteria</title><author>Paulsson, Johan ; El Karoui, Meriem ; Lindell, Monica ; Hughes, Diarmaid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological Evolution</topic><topic>Conversion</topic><topic>DNA Mismatch Repair</topic><topic>DNA Repair</topic><topic>Evolutionary genetics</topic><topic>Gene Conversion</topic><topic>Gene duplication</topic><topic>Gene families</topic><topic>Genes</topic><topic>Genetic recombination</topic><topic>Homology</topic><topic>Kinetics</topic><topic>Microbiology</topic><topic>Mismatch repair</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Peptide Elongation Factor Tu - genetics</topic><topic>Repair</topic><topic>Salmonella</topic><topic>Salmonella - genetics</topic><topic>Stochastic models</topic><topic>Tuf gene</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulsson, Johan</creatorcontrib><creatorcontrib>El Karoui, Meriem</creatorcontrib><creatorcontrib>Lindell, Monica</creatorcontrib><creatorcontrib>Hughes, Diarmaid</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulsson, Johan</au><au>El Karoui, Meriem</au><au>Lindell, Monica</au><au>Hughes, Diarmaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The processive kinetics of gene conversion in bacteria</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>104</volume><issue>5</issue><spage>752</spage><epage>760</epage><pages>752-760</pages><issn>0950-382X</issn><issn>1365-2958</issn><eissn>1365-2958</eissn><abstract>Summary
Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene.
Gene conversion is a major force in evolutionary dynamics, promoting co‐evolution in gene families. However, the properties of conversion – where it initiates, how far it proceeds, and how the resulting conversion tracts are affected by mismatch repair – have not been quantified. Our analysis suggests that gene conversion can initiate uniformly at any position within a gene, and proceed with a high uniform processivity in either direction limited by the bounds of the gene.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>28256783</pmid><doi>10.1111/mmi.13661</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7456-9182</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2017-06, Vol.104 (5), p.752-760 |
issn | 0950-382X 1365-2958 1365-2958 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_327241 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Bacteria Bacteria - genetics Bacterial Proteins - genetics Biological Evolution Conversion DNA Mismatch Repair DNA Repair Evolutionary genetics Gene Conversion Gene duplication Gene families Genes Genetic recombination Homology Kinetics Microbiology Mismatch repair Models, Genetic Mutation Peptide Elongation Factor Tu - genetics Repair Salmonella Salmonella - genetics Stochastic models Tuf gene Yeast |
title | The processive kinetics of gene conversion in bacteria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20processive%20kinetics%20of%20gene%20conversion%20in%20bacteria&rft.jtitle=Molecular%20microbiology&rft.au=Paulsson,%20Johan&rft.date=2017-06&rft.volume=104&rft.issue=5&rft.spage=752&rft.epage=760&rft.pages=752-760&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.13661&rft_dat=%3Cproquest_swepu%3E1874444642%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1901515071&rft_id=info:pmid/28256783&rfr_iscdi=true |