Loading…

The processive kinetics of gene conversion in bacteria

Summary Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it p...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2017-06, Vol.104 (5), p.752-760
Main Authors: Paulsson, Johan, El Karoui, Meriem, Lindell, Monica, Hughes, Diarmaid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473
cites cdi_FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473
container_end_page 760
container_issue 5
container_start_page 752
container_title Molecular microbiology
container_volume 104
creator Paulsson, Johan
El Karoui, Meriem
Lindell, Monica
Hughes, Diarmaid
description Summary Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene. Gene conversion is a major force in evolutionary dynamics, promoting co‐evolution in gene families. However, the properties of conversion – where it initiates, how far it proceeds, and how the resulting conversion tracts are affected by mismatch repair – have not been quantified. Our analysis suggests that gene conversion can initiate uniformly at any position within a gene, and proceed with a high uniform processivity in either direction limited by the bounds of the gene.
doi_str_mv 10.1111/mmi.13661
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_327241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1874444642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473</originalsourceid><addsrcrecordid>eNp1kU1LHTEUhoNY9Na68A-UATcWHM13JhtB7JegdGNLdyE3c-YaO5NckztX_PeNjhUVejZnkScPL-dFaI_gI1LmeBj8EWFSkg00K1vUVItmE82wFrhmDf29jd7nfIMxYViyLbRNGyqkatgMyatrqJYpOsjZr6H64wOsvMtV7KoFBKhcDGtI2cdQ-VDNrVtB8vYDetfZPsPu095BP79-uTr7Xl_8-HZ-dnpRO95gUsOcgpozLkgLhCmMaQfUOay5Y7pVjGuMu45xYgVYLai0VqmWthik7TRXbAcdTt58B8txbpbJDzbdm2i9-ex_nZqYFmYcDaOKclLwkwkv7ACtg7BKtn_16_VL8NdmEddG8EYQqYvg4EmQ4u0IeWUGnx30vQ0Qx2xIo3gZyWlB99-gN3FMoVzDEI2JIAKrh0SfJsqlmHOC7jkMweahPFPKM4_lFfbjy_TP5L-2CnA8AXe-h_v_m8zl5fmk_Auv1qMW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901515071</pqid></control><display><type>article</type><title>The processive kinetics of gene conversion in bacteria</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Paulsson, Johan ; El Karoui, Meriem ; Lindell, Monica ; Hughes, Diarmaid</creator><creatorcontrib>Paulsson, Johan ; El Karoui, Meriem ; Lindell, Monica ; Hughes, Diarmaid</creatorcontrib><description>Summary Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene. Gene conversion is a major force in evolutionary dynamics, promoting co‐evolution in gene families. However, the properties of conversion – where it initiates, how far it proceeds, and how the resulting conversion tracts are affected by mismatch repair – have not been quantified. Our analysis suggests that gene conversion can initiate uniformly at any position within a gene, and proceed with a high uniform processivity in either direction limited by the bounds of the gene.</description><identifier>ISSN: 0950-382X</identifier><identifier>ISSN: 1365-2958</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.13661</identifier><identifier>PMID: 28256783</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacteria ; Bacteria - genetics ; Bacterial Proteins - genetics ; Biological Evolution ; Conversion ; DNA Mismatch Repair ; DNA Repair ; Evolutionary genetics ; Gene Conversion ; Gene duplication ; Gene families ; Genes ; Genetic recombination ; Homology ; Kinetics ; Microbiology ; Mismatch repair ; Models, Genetic ; Mutation ; Peptide Elongation Factor Tu - genetics ; Repair ; Salmonella ; Salmonella - genetics ; Stochastic models ; Tuf gene ; Yeast</subject><ispartof>Molecular microbiology, 2017-06, Vol.104 (5), p.752-760</ispartof><rights>2017 The Authors. Published by John Wiley &amp; Sons Ltd</rights><rights>2017 The Authors. Molecular Microbiology Published by John Wiley &amp; Sons Ltd.</rights><rights>2017 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473</citedby><cites>FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473</cites><orcidid>0000-0002-7456-9182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28256783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-327241$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulsson, Johan</creatorcontrib><creatorcontrib>El Karoui, Meriem</creatorcontrib><creatorcontrib>Lindell, Monica</creatorcontrib><creatorcontrib>Hughes, Diarmaid</creatorcontrib><title>The processive kinetics of gene conversion in bacteria</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene. Gene conversion is a major force in evolutionary dynamics, promoting co‐evolution in gene families. However, the properties of conversion – where it initiates, how far it proceeds, and how the resulting conversion tracts are affected by mismatch repair – have not been quantified. Our analysis suggests that gene conversion can initiate uniformly at any position within a gene, and proceed with a high uniform processivity in either direction limited by the bounds of the gene.</description><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological Evolution</subject><subject>Conversion</subject><subject>DNA Mismatch Repair</subject><subject>DNA Repair</subject><subject>Evolutionary genetics</subject><subject>Gene Conversion</subject><subject>Gene duplication</subject><subject>Gene families</subject><subject>Genes</subject><subject>Genetic recombination</subject><subject>Homology</subject><subject>Kinetics</subject><subject>Microbiology</subject><subject>Mismatch repair</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Peptide Elongation Factor Tu - genetics</subject><subject>Repair</subject><subject>Salmonella</subject><subject>Salmonella - genetics</subject><subject>Stochastic models</subject><subject>Tuf gene</subject><subject>Yeast</subject><issn>0950-382X</issn><issn>1365-2958</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1LHTEUhoNY9Na68A-UATcWHM13JhtB7JegdGNLdyE3c-YaO5NckztX_PeNjhUVejZnkScPL-dFaI_gI1LmeBj8EWFSkg00K1vUVItmE82wFrhmDf29jd7nfIMxYViyLbRNGyqkatgMyatrqJYpOsjZr6H64wOsvMtV7KoFBKhcDGtI2cdQ-VDNrVtB8vYDetfZPsPu095BP79-uTr7Xl_8-HZ-dnpRO95gUsOcgpozLkgLhCmMaQfUOay5Y7pVjGuMu45xYgVYLai0VqmWthik7TRXbAcdTt58B8txbpbJDzbdm2i9-ex_nZqYFmYcDaOKclLwkwkv7ACtg7BKtn_16_VL8NdmEddG8EYQqYvg4EmQ4u0IeWUGnx30vQ0Qx2xIo3gZyWlB99-gN3FMoVzDEI2JIAKrh0SfJsqlmHOC7jkMweahPFPKM4_lFfbjy_TP5L-2CnA8AXe-h_v_m8zl5fmk_Auv1qMW</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Paulsson, Johan</creator><creator>El Karoui, Meriem</creator><creator>Lindell, Monica</creator><creator>Hughes, Diarmaid</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-7456-9182</orcidid></search><sort><creationdate>201706</creationdate><title>The processive kinetics of gene conversion in bacteria</title><author>Paulsson, Johan ; El Karoui, Meriem ; Lindell, Monica ; Hughes, Diarmaid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological Evolution</topic><topic>Conversion</topic><topic>DNA Mismatch Repair</topic><topic>DNA Repair</topic><topic>Evolutionary genetics</topic><topic>Gene Conversion</topic><topic>Gene duplication</topic><topic>Gene families</topic><topic>Genes</topic><topic>Genetic recombination</topic><topic>Homology</topic><topic>Kinetics</topic><topic>Microbiology</topic><topic>Mismatch repair</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Peptide Elongation Factor Tu - genetics</topic><topic>Repair</topic><topic>Salmonella</topic><topic>Salmonella - genetics</topic><topic>Stochastic models</topic><topic>Tuf gene</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulsson, Johan</creatorcontrib><creatorcontrib>El Karoui, Meriem</creatorcontrib><creatorcontrib>Lindell, Monica</creatorcontrib><creatorcontrib>Hughes, Diarmaid</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulsson, Johan</au><au>El Karoui, Meriem</au><au>Lindell, Monica</au><au>Hughes, Diarmaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The processive kinetics of gene conversion in bacteria</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>104</volume><issue>5</issue><spage>752</spage><epage>760</epage><pages>752-760</pages><issn>0950-382X</issn><issn>1365-2958</issn><eissn>1365-2958</eissn><abstract>Summary Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene. Gene conversion is a major force in evolutionary dynamics, promoting co‐evolution in gene families. However, the properties of conversion – where it initiates, how far it proceeds, and how the resulting conversion tracts are affected by mismatch repair – have not been quantified. Our analysis suggests that gene conversion can initiate uniformly at any position within a gene, and proceed with a high uniform processivity in either direction limited by the bounds of the gene.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>28256783</pmid><doi>10.1111/mmi.13661</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7456-9182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2017-06, Vol.104 (5), p.752-760
issn 0950-382X
1365-2958
1365-2958
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_327241
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Bacteria
Bacteria - genetics
Bacterial Proteins - genetics
Biological Evolution
Conversion
DNA Mismatch Repair
DNA Repair
Evolutionary genetics
Gene Conversion
Gene duplication
Gene families
Genes
Genetic recombination
Homology
Kinetics
Microbiology
Mismatch repair
Models, Genetic
Mutation
Peptide Elongation Factor Tu - genetics
Repair
Salmonella
Salmonella - genetics
Stochastic models
Tuf gene
Yeast
title The processive kinetics of gene conversion in bacteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20processive%20kinetics%20of%20gene%20conversion%20in%20bacteria&rft.jtitle=Molecular%20microbiology&rft.au=Paulsson,%20Johan&rft.date=2017-06&rft.volume=104&rft.issue=5&rft.spage=752&rft.epage=760&rft.pages=752-760&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.13661&rft_dat=%3Cproquest_swepu%3E1874444642%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4801-eb2e7b3451de137002fe2cc094c39d734900ff341a5ea9526aa77d2d0e6af9473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1901515071&rft_id=info:pmid/28256783&rfr_iscdi=true