Loading…

Packing random graphs and hypergraphs

We determine to within a constant factor the threshold for the property that two random k‐uniform hypergraphs with edge probability p have an edge‐disjoint packing into the same vertex set. More generally, we allow the hypergraphs to have different densities. In the graph case, we prove a stronger r...

Full description

Saved in:
Bibliographic Details
Published in:Random structures & algorithms 2017-08, Vol.51 (1), p.3-13
Main Authors: Bollobás, Béla, Janson, Svante, Scott, Alex
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3693-3471a24fa6ab801bd1959077ef0663fb704d4870d14991b757a470b849f6adb93
cites cdi_FETCH-LOGICAL-c3693-3471a24fa6ab801bd1959077ef0663fb704d4870d14991b757a470b849f6adb93
container_end_page 13
container_issue 1
container_start_page 3
container_title Random structures & algorithms
container_volume 51
creator Bollobás, Béla
Janson, Svante
Scott, Alex
description We determine to within a constant factor the threshold for the property that two random k‐uniform hypergraphs with edge probability p have an edge‐disjoint packing into the same vertex set. More generally, we allow the hypergraphs to have different densities. In the graph case, we prove a stronger result, on packing a random graph with a fixed graph. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 51, 3–13, 2017
doi_str_mv 10.1002/rsa.20673
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_328961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912492073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3693-3471a24fa6ab801bd1959077ef0663fb704d4870d14991b757a470b849f6adb93</originalsourceid><addsrcrecordid>eNp1kFtLAzEQhYMoWKsP_oMF8UFw7UyS5vJY6hUKirfXkHSz7da2uyYupf_e1BXffJo58M1hziHkFOEKAeggRHtFQUi2R3oIWuWUo9rf7ZzmWjF6SI5iXACAZJT1yPmTnX5U61kW7LqoV9ks2GYesySy-bbxodPH5KC0y-hPfmefvN3evI7v88nj3cN4NMmnTGiWMy7RUl5aYZ0CdAXqoQYpfQlCsNJJ4AVXEgrkWqOTQ2m5BKe4LoUtnGZ9ctn5xo1vWmeaUK1s2JraVua6eh-ZOsxM2xpGlRaY8LMOb0L92fr4ZRZ1G9bpQ4MaKdc0pUzURUdNQx1j8OWfLYLZlWZSaeantMQOOnZTLf32f9A8v4y6i2-FyWto</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912492073</pqid></control><display><type>article</type><title>Packing random graphs and hypergraphs</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bollobás, Béla ; Janson, Svante ; Scott, Alex</creator><creatorcontrib>Bollobás, Béla ; Janson, Svante ; Scott, Alex</creatorcontrib><description>We determine to within a constant factor the threshold for the property that two random k‐uniform hypergraphs with edge probability p have an edge‐disjoint packing into the same vertex set. More generally, we allow the hypergraphs to have different densities. In the graph case, we prove a stronger result, on packing a random graph with a fixed graph. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 51, 3–13, 2017</description><identifier>ISSN: 1042-9832</identifier><identifier>ISSN: 1098-2418</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20673</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Graph theory ; Graphs ; packing ; random hypergraphs</subject><ispartof>Random structures &amp; algorithms, 2017-08, Vol.51 (1), p.3-13</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3693-3471a24fa6ab801bd1959077ef0663fb704d4870d14991b757a470b849f6adb93</citedby><cites>FETCH-LOGICAL-c3693-3471a24fa6ab801bd1959077ef0663fb704d4870d14991b757a470b849f6adb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-328961$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Bollobás, Béla</creatorcontrib><creatorcontrib>Janson, Svante</creatorcontrib><creatorcontrib>Scott, Alex</creatorcontrib><title>Packing random graphs and hypergraphs</title><title>Random structures &amp; algorithms</title><description>We determine to within a constant factor the threshold for the property that two random k‐uniform hypergraphs with edge probability p have an edge‐disjoint packing into the same vertex set. More generally, we allow the hypergraphs to have different densities. In the graph case, we prove a stronger result, on packing a random graph with a fixed graph. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 51, 3–13, 2017</description><subject>Graph theory</subject><subject>Graphs</subject><subject>packing</subject><subject>random hypergraphs</subject><issn>1042-9832</issn><issn>1098-2418</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLAzEQhYMoWKsP_oMF8UFw7UyS5vJY6hUKirfXkHSz7da2uyYupf_e1BXffJo58M1hziHkFOEKAeggRHtFQUi2R3oIWuWUo9rf7ZzmWjF6SI5iXACAZJT1yPmTnX5U61kW7LqoV9ks2GYesySy-bbxodPH5KC0y-hPfmefvN3evI7v88nj3cN4NMmnTGiWMy7RUl5aYZ0CdAXqoQYpfQlCsNJJ4AVXEgrkWqOTQ2m5BKe4LoUtnGZ9ctn5xo1vWmeaUK1s2JraVua6eh-ZOsxM2xpGlRaY8LMOb0L92fr4ZRZ1G9bpQ4MaKdc0pUzURUdNQx1j8OWfLYLZlWZSaeantMQOOnZTLf32f9A8v4y6i2-FyWto</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Bollobás, Béla</creator><creator>Janson, Svante</creator><creator>Scott, Alex</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>201708</creationdate><title>Packing random graphs and hypergraphs</title><author>Bollobás, Béla ; Janson, Svante ; Scott, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3693-3471a24fa6ab801bd1959077ef0663fb704d4870d14991b757a470b849f6adb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Graph theory</topic><topic>Graphs</topic><topic>packing</topic><topic>random hypergraphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bollobás, Béla</creatorcontrib><creatorcontrib>Janson, Svante</creatorcontrib><creatorcontrib>Scott, Alex</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bollobás, Béla</au><au>Janson, Svante</au><au>Scott, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Packing random graphs and hypergraphs</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2017-08</date><risdate>2017</risdate><volume>51</volume><issue>1</issue><spage>3</spage><epage>13</epage><pages>3-13</pages><issn>1042-9832</issn><issn>1098-2418</issn><eissn>1098-2418</eissn><abstract>We determine to within a constant factor the threshold for the property that two random k‐uniform hypergraphs with edge probability p have an edge‐disjoint packing into the same vertex set. More generally, we allow the hypergraphs to have different densities. In the graph case, we prove a stronger result, on packing a random graph with a fixed graph. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 51, 3–13, 2017</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rsa.20673</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2017-08, Vol.51 (1), p.3-13
issn 1042-9832
1098-2418
1098-2418
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_328961
source Wiley-Blackwell Read & Publish Collection
subjects Graph theory
Graphs
packing
random hypergraphs
title Packing random graphs and hypergraphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Packing%20random%20graphs%20and%20hypergraphs&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Bollob%C3%A1s,%20B%C3%A9la&rft.date=2017-08&rft.volume=51&rft.issue=1&rft.spage=3&rft.epage=13&rft.pages=3-13&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20673&rft_dat=%3Cproquest_swepu%3E1912492073%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3693-3471a24fa6ab801bd1959077ef0663fb704d4870d14991b757a470b849f6adb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1912492073&rft_id=info:pmid/&rfr_iscdi=true