Loading…

Synthesis and Characterisation of Nanocomposite Mo-Fe-B Thin Films Deposited by Magnetron Sputtering

Several ternary phases are known in the Mo-Fe-B system. Previous ab initio calculations have predicted that they should exhibit a tempting mix of mechanical and magnetic properties. In this study, we have deposited Mo-Fe-B films with a Fe-content varying from 0-37 at.% using non-reactive DC (direct...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-04, Vol.14 (7), p.1739
Main Authors: Malinovskis, Paulius, Fritze, Stefan, Palisaitis, Justinas, Lewin, Erik, Patscheider, Jörg, Persson, Per O Å, Jansson, Ulf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several ternary phases are known in the Mo-Fe-B system. Previous ab initio calculations have predicted that they should exhibit a tempting mix of mechanical and magnetic properties. In this study, we have deposited Mo-Fe-B films with a Fe-content varying from 0-37 at.% using non-reactive DC (direct current) magnetron sputtering. The phase composition, microstructure, and mechanical properties were investigated using X-ray diffraction, scanning transmission electron microscopy, and nanoindentation measurements. Films deposited at 300 °C and with >7 at.% Fe are nanocomposites consisting of two amorphous phases: a metal-rich phase and a metal-deficient phase. Hardness and elastic modulus were reduced with increasing Fe-content from ~29 to ~19 GPa and ~526 to ~353 GPa, respectively. These values result in H /E ratios of 0.089-0.052 GPa, thereby indicating brittle behaviour of the films. Also, no indication of crystalline ternary phases was observed at temperatures up to 600 °C, suggesting that higher temperatures are required for such films to form.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14071739