Loading…
Model selection and averaging of nonlinear mixed-effect models for robust phase III dose selection
Population model-based (pharmacometric) approaches are widely used for the analyses of phase IIb clinical trial data to increase the accuracy of the dose selection for phase III clinical trials. On the other hand, if the analysis is based on one selected model, model selection bias can potentially s...
Saved in:
Published in: | Journal of pharmacokinetics and pharmacodynamics 2017-12, Vol.44 (6), p.581-597 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c507t-7d0f0de68ea57c25960d03cdf0e7a2add47aedbef3e9127bd142c97841104fba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c507t-7d0f0de68ea57c25960d03cdf0e7a2add47aedbef3e9127bd142c97841104fba3 |
container_end_page | 597 |
container_issue | 6 |
container_start_page | 581 |
container_title | Journal of pharmacokinetics and pharmacodynamics |
container_volume | 44 |
creator | Aoki, Yasunori Röshammar, Daniel Hamrén, Bengt Hooker, Andrew C. |
description | Population model-based (pharmacometric) approaches are widely used for the analyses of phase IIb clinical trial data to increase the accuracy of the dose selection for phase III clinical trials. On the other hand, if the analysis is based on one selected model, model selection bias can potentially spoil the accuracy of the dose selection process. In this paper, four methods that assume a number of pre-defined model structure candidates, for example a set of dose–response shape functions, and then combine or select those candidate models are introduced. The key hypothesis is that by combining both model structure uncertainty and model parameter uncertainty using these methodologies, we can make a more robust model based dose selection decision at the end of a phase IIb clinical trial. These methods are investigated using realistic simulation studies based on the study protocol of an actual phase IIb trial for an oral asthma drug candidate (AZD1981). Based on the simulation study, it is demonstrated that a bootstrap model selection method properly avoids model selection bias and in most cases increases the accuracy of the end of phase IIb decision. Thus, we recommend using this bootstrap model selection method when conducting population model-based decision-making at the end of phase IIb clinical trials. |
doi_str_mv | 10.1007/s10928-017-9550-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_342205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961035306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-7d0f0de68ea57c25960d03cdf0e7a2add47aedbef3e9127bd142c97841104fba3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxSMEoqXwAbggS1w44HbsxHFyQarKn67UigsgbpYTj1NXib3YSYFvj6NdVi0SB8sjze89j-cVxUsGpwxAniUGLW8oMElbIYDCo-KYCVnSRlbV47WuJc3n-1HxLKVbAFYLDk-LI94yKDk0x0V3HQyOJOGI_eyCJ9obou8w6sH5gQRLfPCj86gjmdwvNBStzSiZVl0iNkQSQ7ekmWxvdEKy2WyICbk4WD4vnlg9Jnyxv0-Krx8_fLm4pFefP20uzq9oL0DOVBqwYLBuUAvZc9HWYKDsjQWUmmtjKqnRdGhLbBmXnWEV71vZVIxBZTtdnhRvd77pJ26XTm2jm3T8rYJ26r37dq5CHNSyqLLiHETG3-3wzE5oevRz1OMD1cOOdzdqCHdK1E3N5WrwZm8Qw48F06wml3ocR-0xLEmxts5bFiXUGX39D3oblujzNlaqbNaJVortqD6GlCLawzAM1Bq42gWucuBqDVxB1ry6_4uD4m_CGeD7reSWHzDee_q_rn8AfZm4CA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963842206</pqid></control><display><type>article</type><title>Model selection and averaging of nonlinear mixed-effect models for robust phase III dose selection</title><source>Springer Nature</source><creator>Aoki, Yasunori ; Röshammar, Daniel ; Hamrén, Bengt ; Hooker, Andrew C.</creator><creatorcontrib>Aoki, Yasunori ; Röshammar, Daniel ; Hamrén, Bengt ; Hooker, Andrew C.</creatorcontrib><description>Population model-based (pharmacometric) approaches are widely used for the analyses of phase IIb clinical trial data to increase the accuracy of the dose selection for phase III clinical trials. On the other hand, if the analysis is based on one selected model, model selection bias can potentially spoil the accuracy of the dose selection process. In this paper, four methods that assume a number of pre-defined model structure candidates, for example a set of dose–response shape functions, and then combine or select those candidate models are introduced. The key hypothesis is that by combining both model structure uncertainty and model parameter uncertainty using these methodologies, we can make a more robust model based dose selection decision at the end of a phase IIb clinical trial. These methods are investigated using realistic simulation studies based on the study protocol of an actual phase IIb trial for an oral asthma drug candidate (AZD1981). Based on the simulation study, it is demonstrated that a bootstrap model selection method properly avoids model selection bias and in most cases increases the accuracy of the end of phase IIb decision. Thus, we recommend using this bootstrap model selection method when conducting population model-based decision-making at the end of phase IIb clinical trials.</description><identifier>ISSN: 1567-567X</identifier><identifier>ISSN: 1573-8744</identifier><identifier>EISSN: 1573-8744</identifier><identifier>DOI: 10.1007/s10928-017-9550-0</identifier><identifier>PMID: 29103208</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Acetates - administration & dosage ; Acetates - pharmacokinetics ; Anti-Asthmatic Agents - administration & dosage ; Anti-Asthmatic Agents - pharmacokinetics ; Asthma ; Bias ; Biochemistry ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Clinical trials ; Clinical Trials, Phase II as Topic - statistics & numerical data ; Computer simulation ; Decision making ; Dose finding study ; Dose-effect relationship ; Dose-Response Relationship, Drug ; Economic models ; Female ; Humans ; Indoles - administration & dosage ; Indoles - pharmacokinetics ; Male ; Mathematical modelling ; Model averaging ; Model selection ; Nonlinear Dynamics ; Original Paper ; Pharmacology/Toxicology ; Pharmacometrics ; Pharmacy ; Phase IIb clinical trial ; Shape functions ; Uncertainty ; Veterinary Medicine/Veterinary Science</subject><ispartof>Journal of pharmacokinetics and pharmacodynamics, 2017-12, Vol.44 (6), p.581-597</ispartof><rights>The Author(s) 2017</rights><rights>Journal of Pharmacokinetics and Pharmacodynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-7d0f0de68ea57c25960d03cdf0e7a2add47aedbef3e9127bd142c97841104fba3</citedby><cites>FETCH-LOGICAL-c507t-7d0f0de68ea57c25960d03cdf0e7a2add47aedbef3e9127bd142c97841104fba3</cites><orcidid>0000-0002-5881-2023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29103208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-342205$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Aoki, Yasunori</creatorcontrib><creatorcontrib>Röshammar, Daniel</creatorcontrib><creatorcontrib>Hamrén, Bengt</creatorcontrib><creatorcontrib>Hooker, Andrew C.</creatorcontrib><title>Model selection and averaging of nonlinear mixed-effect models for robust phase III dose selection</title><title>Journal of pharmacokinetics and pharmacodynamics</title><addtitle>J Pharmacokinet Pharmacodyn</addtitle><addtitle>J Pharmacokinet Pharmacodyn</addtitle><description>Population model-based (pharmacometric) approaches are widely used for the analyses of phase IIb clinical trial data to increase the accuracy of the dose selection for phase III clinical trials. On the other hand, if the analysis is based on one selected model, model selection bias can potentially spoil the accuracy of the dose selection process. In this paper, four methods that assume a number of pre-defined model structure candidates, for example a set of dose–response shape functions, and then combine or select those candidate models are introduced. The key hypothesis is that by combining both model structure uncertainty and model parameter uncertainty using these methodologies, we can make a more robust model based dose selection decision at the end of a phase IIb clinical trial. These methods are investigated using realistic simulation studies based on the study protocol of an actual phase IIb trial for an oral asthma drug candidate (AZD1981). Based on the simulation study, it is demonstrated that a bootstrap model selection method properly avoids model selection bias and in most cases increases the accuracy of the end of phase IIb decision. Thus, we recommend using this bootstrap model selection method when conducting population model-based decision-making at the end of phase IIb clinical trials.</description><subject>Accuracy</subject><subject>Acetates - administration & dosage</subject><subject>Acetates - pharmacokinetics</subject><subject>Anti-Asthmatic Agents - administration & dosage</subject><subject>Anti-Asthmatic Agents - pharmacokinetics</subject><subject>Asthma</subject><subject>Bias</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Clinical trials</subject><subject>Clinical Trials, Phase II as Topic - statistics & numerical data</subject><subject>Computer simulation</subject><subject>Decision making</subject><subject>Dose finding study</subject><subject>Dose-effect relationship</subject><subject>Dose-Response Relationship, Drug</subject><subject>Economic models</subject><subject>Female</subject><subject>Humans</subject><subject>Indoles - administration & dosage</subject><subject>Indoles - pharmacokinetics</subject><subject>Male</subject><subject>Mathematical modelling</subject><subject>Model averaging</subject><subject>Model selection</subject><subject>Nonlinear Dynamics</subject><subject>Original Paper</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacometrics</subject><subject>Pharmacy</subject><subject>Phase IIb clinical trial</subject><subject>Shape functions</subject><subject>Uncertainty</subject><subject>Veterinary Medicine/Veterinary Science</subject><issn>1567-567X</issn><issn>1573-8744</issn><issn>1573-8744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v1DAQxSMEoqXwAbggS1w44HbsxHFyQarKn67UigsgbpYTj1NXib3YSYFvj6NdVi0SB8sjze89j-cVxUsGpwxAniUGLW8oMElbIYDCo-KYCVnSRlbV47WuJc3n-1HxLKVbAFYLDk-LI94yKDk0x0V3HQyOJOGI_eyCJ9obou8w6sH5gQRLfPCj86gjmdwvNBStzSiZVl0iNkQSQ7ekmWxvdEKy2WyICbk4WD4vnlg9Jnyxv0-Krx8_fLm4pFefP20uzq9oL0DOVBqwYLBuUAvZc9HWYKDsjQWUmmtjKqnRdGhLbBmXnWEV71vZVIxBZTtdnhRvd77pJ26XTm2jm3T8rYJ26r37dq5CHNSyqLLiHETG3-3wzE5oevRz1OMD1cOOdzdqCHdK1E3N5WrwZm8Qw48F06wml3ocR-0xLEmxts5bFiXUGX39D3oblujzNlaqbNaJVortqD6GlCLawzAM1Bq42gWucuBqDVxB1ry6_4uD4m_CGeD7reSWHzDee_q_rn8AfZm4CA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Aoki, Yasunori</creator><creator>Röshammar, Daniel</creator><creator>Hamrén, Bengt</creator><creator>Hooker, Andrew C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-5881-2023</orcidid></search><sort><creationdate>20171201</creationdate><title>Model selection and averaging of nonlinear mixed-effect models for robust phase III dose selection</title><author>Aoki, Yasunori ; Röshammar, Daniel ; Hamrén, Bengt ; Hooker, Andrew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-7d0f0de68ea57c25960d03cdf0e7a2add47aedbef3e9127bd142c97841104fba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Acetates - administration & dosage</topic><topic>Acetates - pharmacokinetics</topic><topic>Anti-Asthmatic Agents - administration & dosage</topic><topic>Anti-Asthmatic Agents - pharmacokinetics</topic><topic>Asthma</topic><topic>Bias</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Clinical trials</topic><topic>Clinical Trials, Phase II as Topic - statistics & numerical data</topic><topic>Computer simulation</topic><topic>Decision making</topic><topic>Dose finding study</topic><topic>Dose-effect relationship</topic><topic>Dose-Response Relationship, Drug</topic><topic>Economic models</topic><topic>Female</topic><topic>Humans</topic><topic>Indoles - administration & dosage</topic><topic>Indoles - pharmacokinetics</topic><topic>Male</topic><topic>Mathematical modelling</topic><topic>Model averaging</topic><topic>Model selection</topic><topic>Nonlinear Dynamics</topic><topic>Original Paper</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacometrics</topic><topic>Pharmacy</topic><topic>Phase IIb clinical trial</topic><topic>Shape functions</topic><topic>Uncertainty</topic><topic>Veterinary Medicine/Veterinary Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoki, Yasunori</creatorcontrib><creatorcontrib>Röshammar, Daniel</creatorcontrib><creatorcontrib>Hamrén, Bengt</creatorcontrib><creatorcontrib>Hooker, Andrew C.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of pharmacokinetics and pharmacodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, Yasunori</au><au>Röshammar, Daniel</au><au>Hamrén, Bengt</au><au>Hooker, Andrew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model selection and averaging of nonlinear mixed-effect models for robust phase III dose selection</atitle><jtitle>Journal of pharmacokinetics and pharmacodynamics</jtitle><stitle>J Pharmacokinet Pharmacodyn</stitle><addtitle>J Pharmacokinet Pharmacodyn</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>44</volume><issue>6</issue><spage>581</spage><epage>597</epage><pages>581-597</pages><issn>1567-567X</issn><issn>1573-8744</issn><eissn>1573-8744</eissn><abstract>Population model-based (pharmacometric) approaches are widely used for the analyses of phase IIb clinical trial data to increase the accuracy of the dose selection for phase III clinical trials. On the other hand, if the analysis is based on one selected model, model selection bias can potentially spoil the accuracy of the dose selection process. In this paper, four methods that assume a number of pre-defined model structure candidates, for example a set of dose–response shape functions, and then combine or select those candidate models are introduced. The key hypothesis is that by combining both model structure uncertainty and model parameter uncertainty using these methodologies, we can make a more robust model based dose selection decision at the end of a phase IIb clinical trial. These methods are investigated using realistic simulation studies based on the study protocol of an actual phase IIb trial for an oral asthma drug candidate (AZD1981). Based on the simulation study, it is demonstrated that a bootstrap model selection method properly avoids model selection bias and in most cases increases the accuracy of the end of phase IIb decision. Thus, we recommend using this bootstrap model selection method when conducting population model-based decision-making at the end of phase IIb clinical trials.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29103208</pmid><doi>10.1007/s10928-017-9550-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5881-2023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-567X |
ispartof | Journal of pharmacokinetics and pharmacodynamics, 2017-12, Vol.44 (6), p.581-597 |
issn | 1567-567X 1573-8744 1573-8744 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_342205 |
source | Springer Nature |
subjects | Accuracy Acetates - administration & dosage Acetates - pharmacokinetics Anti-Asthmatic Agents - administration & dosage Anti-Asthmatic Agents - pharmacokinetics Asthma Bias Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Clinical trials Clinical Trials, Phase II as Topic - statistics & numerical data Computer simulation Decision making Dose finding study Dose-effect relationship Dose-Response Relationship, Drug Economic models Female Humans Indoles - administration & dosage Indoles - pharmacokinetics Male Mathematical modelling Model averaging Model selection Nonlinear Dynamics Original Paper Pharmacology/Toxicology Pharmacometrics Pharmacy Phase IIb clinical trial Shape functions Uncertainty Veterinary Medicine/Veterinary Science |
title | Model selection and averaging of nonlinear mixed-effect models for robust phase III dose selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20selection%20and%20averaging%20of%20nonlinear%20mixed-effect%20models%20for%20robust%20phase%20III%20dose%20selection&rft.jtitle=Journal%20of%20pharmacokinetics%20and%20pharmacodynamics&rft.au=Aoki,%20Yasunori&rft.date=2017-12-01&rft.volume=44&rft.issue=6&rft.spage=581&rft.epage=597&rft.pages=581-597&rft.issn=1567-567X&rft.eissn=1573-8744&rft_id=info:doi/10.1007/s10928-017-9550-0&rft_dat=%3Cproquest_swepu%3E1961035306%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-7d0f0de68ea57c25960d03cdf0e7a2add47aedbef3e9127bd142c97841104fba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1963842206&rft_id=info:pmid/29103208&rfr_iscdi=true |