Loading…

Addressing the Environment Electrostatic Effect on Ballistic Electron Transport in Large Systems: A QM/MM-NEGF Approach

The effects of the environment in nanoscopic materials can play a crucial role in device design. Particularly in biosensors, where the system is usually embedded in a solution, water and ions have to be taken into consideration in atomistic simulations of electronic transport for a realistic descrip...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2018-01, Vol.122 (2), p.485-492
Main Authors: Feliciano, Gustavo T, Sanz-Navarro, Carlos, Coutinho-Neto, Mauricio Domingues, Ordejón, Pablo, Scheicher, Ralph H, Rocha, Alexandre Reily
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a415t-6877c0370b3c62a3f0dfb6dbc4d67ede9f30229c406880325668266d81ce987f3
cites cdi_FETCH-LOGICAL-a415t-6877c0370b3c62a3f0dfb6dbc4d67ede9f30229c406880325668266d81ce987f3
container_end_page 492
container_issue 2
container_start_page 485
container_title The journal of physical chemistry. B
container_volume 122
creator Feliciano, Gustavo T
Sanz-Navarro, Carlos
Coutinho-Neto, Mauricio Domingues
Ordejón, Pablo
Scheicher, Ralph H
Rocha, Alexandre Reily
description The effects of the environment in nanoscopic materials can play a crucial role in device design. Particularly in biosensors, where the system is usually embedded in a solution, water and ions have to be taken into consideration in atomistic simulations of electronic transport for a realistic description of the system. In this work, we present a methodology that combines quantum mechanics/molecular mechanics methods (QM/MM) with the nonequilibrium Green’s function framework to simulate the electronic transport properties of nanoscopic devices in the presence of solvents. As a case in point, we present further results for DNA translocation through a graphene nanopore. In particular, we take a closer look into general assumptions in a previous work. For this sake, we consider larger QM regions that include the first two solvation shells and investigate the effects of adding extra k-points to the NEGF calculations. The transverse conductance is then calculated in a prototype sequencing device in order to highlight the effects of the solvent.
doi_str_mv 10.1021/acs.jpcb.7b03475
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_343858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920392408</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-6877c0370b3c62a3f0dfb6dbc4d67ede9f30229c406880325668266d81ce987f3</originalsourceid><addsrcrecordid>eNp1kc1P3DAQxS0EAkq5c6p85NAs_khsp7eUBlppl6oqcLUcx1mMEju1nSL--2bZLZw4jDxj_d7TaB4AZxgtMCL4Qum4eBx1s-ANojkv9sAxLgjK5uL7u55hxI7AhxgfESIFEewQHBHBCeYkPwZPVdsGE6N1a5geDKzdXxu8G4xLsO6NTsHHpJLVsO66eYTewa-q7218-dsSDt4G5eLoQ4LWwaUKawN_P8dkhvgFVvDX6mK1ym7q6ytYjWPwSj98BAed6qM53b0n4O6qvr38ni1_Xv-4rJaZynGRMiY414hy1FDNiKIdaruGtY3OW8ZNa8qOIkJKnSMmBKKkYEwQxlqBtSkF7-gJ-Lz1jU9mnBo5Bjuo8Cy9svKbva-kD2s5TZLmVBRixs-3-Lzln8nEJAcbtel75YyfosQlQbQkOdqgaIvq-UQxmO7VGyO5SUfO6chNOnKXziz5tHOfmsG0r4L_cbxt-yL1U3Dzbd73-wcYy5sJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920392408</pqid></control><display><type>article</type><title>Addressing the Environment Electrostatic Effect on Ballistic Electron Transport in Large Systems: A QM/MM-NEGF Approach</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Feliciano, Gustavo T ; Sanz-Navarro, Carlos ; Coutinho-Neto, Mauricio Domingues ; Ordejón, Pablo ; Scheicher, Ralph H ; Rocha, Alexandre Reily</creator><creatorcontrib>Feliciano, Gustavo T ; Sanz-Navarro, Carlos ; Coutinho-Neto, Mauricio Domingues ; Ordejón, Pablo ; Scheicher, Ralph H ; Rocha, Alexandre Reily</creatorcontrib><description>The effects of the environment in nanoscopic materials can play a crucial role in device design. Particularly in biosensors, where the system is usually embedded in a solution, water and ions have to be taken into consideration in atomistic simulations of electronic transport for a realistic description of the system. In this work, we present a methodology that combines quantum mechanics/molecular mechanics methods (QM/MM) with the nonequilibrium Green’s function framework to simulate the electronic transport properties of nanoscopic devices in the presence of solvents. As a case in point, we present further results for DNA translocation through a graphene nanopore. In particular, we take a closer look into general assumptions in a previous work. For this sake, we consider larger QM regions that include the first two solvation shells and investigate the effects of adding extra k-points to the NEGF calculations. The transverse conductance is then calculated in a prototype sequencing device in order to highlight the effects of the solvent.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.7b03475</identifier><identifier>PMID: 28721724</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2018-01, Vol.122 (2), p.485-492</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-6877c0370b3c62a3f0dfb6dbc4d67ede9f30229c406880325668266d81ce987f3</citedby><cites>FETCH-LOGICAL-a415t-6877c0370b3c62a3f0dfb6dbc4d67ede9f30229c406880325668266d81ce987f3</cites><orcidid>0000-0002-7187-0076 ; 0000-0001-5559-5919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28721724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-343858$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Feliciano, Gustavo T</creatorcontrib><creatorcontrib>Sanz-Navarro, Carlos</creatorcontrib><creatorcontrib>Coutinho-Neto, Mauricio Domingues</creatorcontrib><creatorcontrib>Ordejón, Pablo</creatorcontrib><creatorcontrib>Scheicher, Ralph H</creatorcontrib><creatorcontrib>Rocha, Alexandre Reily</creatorcontrib><title>Addressing the Environment Electrostatic Effect on Ballistic Electron Transport in Large Systems: A QM/MM-NEGF Approach</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The effects of the environment in nanoscopic materials can play a crucial role in device design. Particularly in biosensors, where the system is usually embedded in a solution, water and ions have to be taken into consideration in atomistic simulations of electronic transport for a realistic description of the system. In this work, we present a methodology that combines quantum mechanics/molecular mechanics methods (QM/MM) with the nonequilibrium Green’s function framework to simulate the electronic transport properties of nanoscopic devices in the presence of solvents. As a case in point, we present further results for DNA translocation through a graphene nanopore. In particular, we take a closer look into general assumptions in a previous work. For this sake, we consider larger QM regions that include the first two solvation shells and investigate the effects of adding extra k-points to the NEGF calculations. The transverse conductance is then calculated in a prototype sequencing device in order to highlight the effects of the solvent.</description><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1P3DAQxS0EAkq5c6p85NAs_khsp7eUBlppl6oqcLUcx1mMEju1nSL--2bZLZw4jDxj_d7TaB4AZxgtMCL4Qum4eBx1s-ANojkv9sAxLgjK5uL7u55hxI7AhxgfESIFEewQHBHBCeYkPwZPVdsGE6N1a5geDKzdXxu8G4xLsO6NTsHHpJLVsO66eYTewa-q7218-dsSDt4G5eLoQ4LWwaUKawN_P8dkhvgFVvDX6mK1ym7q6ytYjWPwSj98BAed6qM53b0n4O6qvr38ni1_Xv-4rJaZynGRMiY414hy1FDNiKIdaruGtY3OW8ZNa8qOIkJKnSMmBKKkYEwQxlqBtSkF7-gJ-Lz1jU9mnBo5Bjuo8Cy9svKbva-kD2s5TZLmVBRixs-3-Lzln8nEJAcbtel75YyfosQlQbQkOdqgaIvq-UQxmO7VGyO5SUfO6chNOnKXziz5tHOfmsG0r4L_cbxt-yL1U3Dzbd73-wcYy5sJ</recordid><startdate>20180118</startdate><enddate>20180118</enddate><creator>Feliciano, Gustavo T</creator><creator>Sanz-Navarro, Carlos</creator><creator>Coutinho-Neto, Mauricio Domingues</creator><creator>Ordejón, Pablo</creator><creator>Scheicher, Ralph H</creator><creator>Rocha, Alexandre Reily</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-7187-0076</orcidid><orcidid>https://orcid.org/0000-0001-5559-5919</orcidid></search><sort><creationdate>20180118</creationdate><title>Addressing the Environment Electrostatic Effect on Ballistic Electron Transport in Large Systems: A QM/MM-NEGF Approach</title><author>Feliciano, Gustavo T ; Sanz-Navarro, Carlos ; Coutinho-Neto, Mauricio Domingues ; Ordejón, Pablo ; Scheicher, Ralph H ; Rocha, Alexandre Reily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-6877c0370b3c62a3f0dfb6dbc4d67ede9f30229c406880325668266d81ce987f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feliciano, Gustavo T</creatorcontrib><creatorcontrib>Sanz-Navarro, Carlos</creatorcontrib><creatorcontrib>Coutinho-Neto, Mauricio Domingues</creatorcontrib><creatorcontrib>Ordejón, Pablo</creatorcontrib><creatorcontrib>Scheicher, Ralph H</creatorcontrib><creatorcontrib>Rocha, Alexandre Reily</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feliciano, Gustavo T</au><au>Sanz-Navarro, Carlos</au><au>Coutinho-Neto, Mauricio Domingues</au><au>Ordejón, Pablo</au><au>Scheicher, Ralph H</au><au>Rocha, Alexandre Reily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Addressing the Environment Electrostatic Effect on Ballistic Electron Transport in Large Systems: A QM/MM-NEGF Approach</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2018-01-18</date><risdate>2018</risdate><volume>122</volume><issue>2</issue><spage>485</spage><epage>492</epage><pages>485-492</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>The effects of the environment in nanoscopic materials can play a crucial role in device design. Particularly in biosensors, where the system is usually embedded in a solution, water and ions have to be taken into consideration in atomistic simulations of electronic transport for a realistic description of the system. In this work, we present a methodology that combines quantum mechanics/molecular mechanics methods (QM/MM) with the nonequilibrium Green’s function framework to simulate the electronic transport properties of nanoscopic devices in the presence of solvents. As a case in point, we present further results for DNA translocation through a graphene nanopore. In particular, we take a closer look into general assumptions in a previous work. For this sake, we consider larger QM regions that include the first two solvation shells and investigate the effects of adding extra k-points to the NEGF calculations. The transverse conductance is then calculated in a prototype sequencing device in order to highlight the effects of the solvent.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28721724</pmid><doi>10.1021/acs.jpcb.7b03475</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7187-0076</orcidid><orcidid>https://orcid.org/0000-0001-5559-5919</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2018-01, Vol.122 (2), p.485-492
issn 1520-6106
1520-5207
1520-5207
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_343858
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Addressing the Environment Electrostatic Effect on Ballistic Electron Transport in Large Systems: A QM/MM-NEGF Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Addressing%20the%20Environment%20Electrostatic%20Effect%20on%20Ballistic%20Electron%20Transport%20in%20Large%20Systems:%20A%20QM/MM-NEGF%20Approach&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Feliciano,%20Gustavo%20T&rft.date=2018-01-18&rft.volume=122&rft.issue=2&rft.spage=485&rft.epage=492&rft.pages=485-492&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.7b03475&rft_dat=%3Cproquest_swepu%3E1920392408%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a415t-6877c0370b3c62a3f0dfb6dbc4d67ede9f30229c406880325668266d81ce987f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920392408&rft_id=info:pmid/28721724&rfr_iscdi=true