Loading…
Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale
A detailed study of the structural and magnetic properties of polycrystalline hollow γ-Fe2O3 nanoparticles of ∼9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ∼1.4 nm, implying a...
Saved in:
Published in: | Journal of physical chemistry. C 2018-04, Vol.122 (13), p.7516-7524 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3 |
container_end_page | 7524 |
container_issue | 13 |
container_start_page | 7516 |
container_title | Journal of physical chemistry. C |
container_volume | 122 |
creator | Sayed, F Yaacoub, N Labaye, Y Hassan, R. Sayed Singh, G Kumar, P. Anil Greneche, J. M Mathieu, R Hadjipanayis, G. C Agostinelli, E Peddis, D |
description | A detailed study of the structural and magnetic properties of polycrystalline hollow γ-Fe2O3 nanoparticles of ∼9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ∼1.4 nm, implying a very high surface/volume ratio. These hollow nanoparticles were investigated using zero-field and in-field 57Fe Mössbauer spectrometry. The zero-field hyperfine structure suggests some topological disorder, whereas the in-field one shows the presence of a comp magnetic structure that can be fairly described as two opposite pseudosperomagnetic sublattices attributed to octahedral and tetrahedral iron sites. Such an unusual feature is consistent with the presence of noncollinear spin structure originated from the increased surface due to the hollow morphology. Such a complex local spin structure evidenced from Mössbauer experiments was correlated with exchange bias coupling showing at low temperature by magnetization measurements. Monte Carlo simulations on a ferrimagnetic hollow nanoparticle unambiguously corroborate the critical role of the surface anisotropy on the noncollinearity of spin structure in our samples. |
doi_str_mv | 10.1021/acs.jpcc.8b00300 |
format | article |
fullrecord | <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_352691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c937305187</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdoz-AlLWdR8OtagutVOgBytXaOE6bKsSRnYjy97gPlROnnd2d2dUMIfcMBgw4e0TlBttGqcEwAxAAF6THUsGDJIyiyzMOk2ty49wWIBLARI9s3ztboNJ0WhRatY6WNV1VrcV249Hcmpoud2Wu6cxUlfmmb1ibBm1bqkq7JzrdNZWxZb2mr7iutR_TSemMzbWl2NJ2ow8Kp7DSt-SqwMrpu1Ptk9Xz9GM8CxbLl_l4tAhQsKQNFIo8j7lvchSASZaDN-gtxgpwGCsd8kSnnCVxyFDzCJI0hZzxjBVMh6kWffJwvOu-ddNlsrHlF9ofabCUk_JzJI1dy66TIuJxyjwdjnRljXNWF2cBA7mPVvpo5T5aeYr278NhYzpbez__038Bvjt90w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Sayed, F ; Yaacoub, N ; Labaye, Y ; Hassan, R. Sayed ; Singh, G ; Kumar, P. Anil ; Greneche, J. M ; Mathieu, R ; Hadjipanayis, G. C ; Agostinelli, E ; Peddis, D</creator><creatorcontrib>Sayed, F ; Yaacoub, N ; Labaye, Y ; Hassan, R. Sayed ; Singh, G ; Kumar, P. Anil ; Greneche, J. M ; Mathieu, R ; Hadjipanayis, G. C ; Agostinelli, E ; Peddis, D</creatorcontrib><description>A detailed study of the structural and magnetic properties of polycrystalline hollow γ-Fe2O3 nanoparticles of ∼9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ∼1.4 nm, implying a very high surface/volume ratio. These hollow nanoparticles were investigated using zero-field and in-field 57Fe Mössbauer spectrometry. The zero-field hyperfine structure suggests some topological disorder, whereas the in-field one shows the presence of a comp magnetic structure that can be fairly described as two opposite pseudosperomagnetic sublattices attributed to octahedral and tetrahedral iron sites. Such an unusual feature is consistent with the presence of noncollinear spin structure originated from the increased surface due to the hollow morphology. Such a complex local spin structure evidenced from Mössbauer experiments was correlated with exchange bias coupling showing at low temperature by magnetization measurements. Monte Carlo simulations on a ferrimagnetic hollow nanoparticle unambiguously corroborate the critical role of the surface anisotropy on the noncollinearity of spin structure in our samples.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b00300</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2018-04, Vol.122 (13), p.7516-7524</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3</citedby><cites>FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3</cites><orcidid>0000-0001-9700-3344 ; 0000-0002-5261-2047 ; 0000-0003-0810-8860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352691$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sayed, F</creatorcontrib><creatorcontrib>Yaacoub, N</creatorcontrib><creatorcontrib>Labaye, Y</creatorcontrib><creatorcontrib>Hassan, R. Sayed</creatorcontrib><creatorcontrib>Singh, G</creatorcontrib><creatorcontrib>Kumar, P. Anil</creatorcontrib><creatorcontrib>Greneche, J. M</creatorcontrib><creatorcontrib>Mathieu, R</creatorcontrib><creatorcontrib>Hadjipanayis, G. C</creatorcontrib><creatorcontrib>Agostinelli, E</creatorcontrib><creatorcontrib>Peddis, D</creatorcontrib><title>Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A detailed study of the structural and magnetic properties of polycrystalline hollow γ-Fe2O3 nanoparticles of ∼9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ∼1.4 nm, implying a very high surface/volume ratio. These hollow nanoparticles were investigated using zero-field and in-field 57Fe Mössbauer spectrometry. The zero-field hyperfine structure suggests some topological disorder, whereas the in-field one shows the presence of a comp magnetic structure that can be fairly described as two opposite pseudosperomagnetic sublattices attributed to octahedral and tetrahedral iron sites. Such an unusual feature is consistent with the presence of noncollinear spin structure originated from the increased surface due to the hollow morphology. Such a complex local spin structure evidenced from Mössbauer experiments was correlated with exchange bias coupling showing at low temperature by magnetization measurements. Monte Carlo simulations on a ferrimagnetic hollow nanoparticle unambiguously corroborate the critical role of the surface anisotropy on the noncollinearity of spin structure in our samples.</description><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKdoz-AlLWdR8OtagutVOgBytXaOE6bKsSRnYjy97gPlROnnd2d2dUMIfcMBgw4e0TlBttGqcEwAxAAF6THUsGDJIyiyzMOk2ty49wWIBLARI9s3ztboNJ0WhRatY6WNV1VrcV249Hcmpoud2Wu6cxUlfmmb1ibBm1bqkq7JzrdNZWxZb2mr7iutR_TSemMzbWl2NJ2ow8Kp7DSt-SqwMrpu1Ptk9Xz9GM8CxbLl_l4tAhQsKQNFIo8j7lvchSASZaDN-gtxgpwGCsd8kSnnCVxyFDzCJI0hZzxjBVMh6kWffJwvOu-ddNlsrHlF9ofabCUk_JzJI1dy66TIuJxyjwdjnRljXNWF2cBA7mPVvpo5T5aeYr278NhYzpbez__038Bvjt90w</recordid><startdate>20180405</startdate><enddate>20180405</enddate><creator>Sayed, F</creator><creator>Yaacoub, N</creator><creator>Labaye, Y</creator><creator>Hassan, R. Sayed</creator><creator>Singh, G</creator><creator>Kumar, P. Anil</creator><creator>Greneche, J. M</creator><creator>Mathieu, R</creator><creator>Hadjipanayis, G. C</creator><creator>Agostinelli, E</creator><creator>Peddis, D</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0001-9700-3344</orcidid><orcidid>https://orcid.org/0000-0002-5261-2047</orcidid><orcidid>https://orcid.org/0000-0003-0810-8860</orcidid></search><sort><creationdate>20180405</creationdate><title>Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale</title><author>Sayed, F ; Yaacoub, N ; Labaye, Y ; Hassan, R. Sayed ; Singh, G ; Kumar, P. Anil ; Greneche, J. M ; Mathieu, R ; Hadjipanayis, G. C ; Agostinelli, E ; Peddis, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayed, F</creatorcontrib><creatorcontrib>Yaacoub, N</creatorcontrib><creatorcontrib>Labaye, Y</creatorcontrib><creatorcontrib>Hassan, R. Sayed</creatorcontrib><creatorcontrib>Singh, G</creatorcontrib><creatorcontrib>Kumar, P. Anil</creatorcontrib><creatorcontrib>Greneche, J. M</creatorcontrib><creatorcontrib>Mathieu, R</creatorcontrib><creatorcontrib>Hadjipanayis, G. C</creatorcontrib><creatorcontrib>Agostinelli, E</creatorcontrib><creatorcontrib>Peddis, D</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayed, F</au><au>Yaacoub, N</au><au>Labaye, Y</au><au>Hassan, R. Sayed</au><au>Singh, G</au><au>Kumar, P. Anil</au><au>Greneche, J. M</au><au>Mathieu, R</au><au>Hadjipanayis, G. C</au><au>Agostinelli, E</au><au>Peddis, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-04-05</date><risdate>2018</risdate><volume>122</volume><issue>13</issue><spage>7516</spage><epage>7524</epage><pages>7516-7524</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>A detailed study of the structural and magnetic properties of polycrystalline hollow γ-Fe2O3 nanoparticles of ∼9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ∼1.4 nm, implying a very high surface/volume ratio. These hollow nanoparticles were investigated using zero-field and in-field 57Fe Mössbauer spectrometry. The zero-field hyperfine structure suggests some topological disorder, whereas the in-field one shows the presence of a comp magnetic structure that can be fairly described as two opposite pseudosperomagnetic sublattices attributed to octahedral and tetrahedral iron sites. Such an unusual feature is consistent with the presence of noncollinear spin structure originated from the increased surface due to the hollow morphology. Such a complex local spin structure evidenced from Mössbauer experiments was correlated with exchange bias coupling showing at low temperature by magnetization measurements. Monte Carlo simulations on a ferrimagnetic hollow nanoparticle unambiguously corroborate the critical role of the surface anisotropy on the noncollinearity of spin structure in our samples.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b00300</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9700-3344</orcidid><orcidid>https://orcid.org/0000-0002-5261-2047</orcidid><orcidid>https://orcid.org/0000-0003-0810-8860</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2018-04, Vol.122 (13), p.7516-7524 |
issn | 1932-7447 1932-7455 1932-7455 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_352691 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Effects%20in%20Ultrathin%20Iron%20Oxide%20Hollow%20Nanoparticles:%20Exploring%20Magnetic%20Disorder%20at%20the%20Nanoscale&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sayed,%20F&rft.date=2018-04-05&rft.volume=122&rft.issue=13&rft.spage=7516&rft.epage=7524&rft.pages=7516-7524&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b00300&rft_dat=%3Cacs_swepu%3Ec937305187%3C/acs_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |