Loading…

Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale

A detailed study of the structural and magnetic properties of polycrystalline hollow γ-Fe2O3 nanoparticles of ∼9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ∼1.4 nm, implying a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2018-04, Vol.122 (13), p.7516-7524
Main Authors: Sayed, F, Yaacoub, N, Labaye, Y, Hassan, R. Sayed, Singh, G, Kumar, P. Anil, Greneche, J. M, Mathieu, R, Hadjipanayis, G. C, Agostinelli, E, Peddis, D
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3
cites cdi_FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3
container_end_page 7524
container_issue 13
container_start_page 7516
container_title Journal of physical chemistry. C
container_volume 122
creator Sayed, F
Yaacoub, N
Labaye, Y
Hassan, R. Sayed
Singh, G
Kumar, P. Anil
Greneche, J. M
Mathieu, R
Hadjipanayis, G. C
Agostinelli, E
Peddis, D
description A detailed study of the structural and magnetic properties of polycrystalline hollow γ-Fe2O3 nanoparticles of ∼9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ∼1.4 nm, implying a very high surface/volume ratio. These hollow nanoparticles were investigated using zero-field and in-field 57Fe Mössbauer spectrometry. The zero-field hyperfine structure suggests some topological disorder, whereas the in-field one shows the presence of a comp magnetic structure that can be fairly described as two opposite pseudosperomagnetic sublattices attributed to octahedral and tetrahedral iron sites. Such an unusual feature is consistent with the presence of noncollinear spin structure originated from the increased surface due to the hollow morphology. Such a complex local spin structure evidenced from Mössbauer experiments was correlated with exchange bias coupling showing at low temperature by magnetization measurements. Monte Carlo simulations on a ferrimagnetic hollow nanoparticle unambiguously corroborate the critical role of the surface anisotropy on the noncollinearity of spin structure in our samples.
doi_str_mv 10.1021/acs.jpcc.8b00300
format article
fullrecord <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_352691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c937305187</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdoz-AlLWdR8OtagutVOgBytXaOE6bKsSRnYjy97gPlROnnd2d2dUMIfcMBgw4e0TlBttGqcEwAxAAF6THUsGDJIyiyzMOk2ty49wWIBLARI9s3ztboNJ0WhRatY6WNV1VrcV249Hcmpoud2Wu6cxUlfmmb1ibBm1bqkq7JzrdNZWxZb2mr7iutR_TSemMzbWl2NJ2ow8Kp7DSt-SqwMrpu1Ptk9Xz9GM8CxbLl_l4tAhQsKQNFIo8j7lvchSASZaDN-gtxgpwGCsd8kSnnCVxyFDzCJI0hZzxjBVMh6kWffJwvOu-ddNlsrHlF9ofabCUk_JzJI1dy66TIuJxyjwdjnRljXNWF2cBA7mPVvpo5T5aeYr278NhYzpbez__038Bvjt90w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Sayed, F ; Yaacoub, N ; Labaye, Y ; Hassan, R. Sayed ; Singh, G ; Kumar, P. Anil ; Greneche, J. M ; Mathieu, R ; Hadjipanayis, G. C ; Agostinelli, E ; Peddis, D</creator><creatorcontrib>Sayed, F ; Yaacoub, N ; Labaye, Y ; Hassan, R. Sayed ; Singh, G ; Kumar, P. Anil ; Greneche, J. M ; Mathieu, R ; Hadjipanayis, G. C ; Agostinelli, E ; Peddis, D</creatorcontrib><description>A detailed study of the structural and magnetic properties of polycrystalline hollow γ-Fe2O3 nanoparticles of ∼9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ∼1.4 nm, implying a very high surface/volume ratio. These hollow nanoparticles were investigated using zero-field and in-field 57Fe Mössbauer spectrometry. The zero-field hyperfine structure suggests some topological disorder, whereas the in-field one shows the presence of a comp magnetic structure that can be fairly described as two opposite pseudosperomagnetic sublattices attributed to octahedral and tetrahedral iron sites. Such an unusual feature is consistent with the presence of noncollinear spin structure originated from the increased surface due to the hollow morphology. Such a complex local spin structure evidenced from Mössbauer experiments was correlated with exchange bias coupling showing at low temperature by magnetization measurements. Monte Carlo simulations on a ferrimagnetic hollow nanoparticle unambiguously corroborate the critical role of the surface anisotropy on the noncollinearity of spin structure in our samples.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b00300</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2018-04, Vol.122 (13), p.7516-7524</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3</citedby><cites>FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3</cites><orcidid>0000-0001-9700-3344 ; 0000-0002-5261-2047 ; 0000-0003-0810-8860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352691$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sayed, F</creatorcontrib><creatorcontrib>Yaacoub, N</creatorcontrib><creatorcontrib>Labaye, Y</creatorcontrib><creatorcontrib>Hassan, R. Sayed</creatorcontrib><creatorcontrib>Singh, G</creatorcontrib><creatorcontrib>Kumar, P. Anil</creatorcontrib><creatorcontrib>Greneche, J. M</creatorcontrib><creatorcontrib>Mathieu, R</creatorcontrib><creatorcontrib>Hadjipanayis, G. C</creatorcontrib><creatorcontrib>Agostinelli, E</creatorcontrib><creatorcontrib>Peddis, D</creatorcontrib><title>Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A detailed study of the structural and magnetic properties of polycrystalline hollow γ-Fe2O3 nanoparticles of ∼9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ∼1.4 nm, implying a very high surface/volume ratio. These hollow nanoparticles were investigated using zero-field and in-field 57Fe Mössbauer spectrometry. The zero-field hyperfine structure suggests some topological disorder, whereas the in-field one shows the presence of a comp magnetic structure that can be fairly described as two opposite pseudosperomagnetic sublattices attributed to octahedral and tetrahedral iron sites. Such an unusual feature is consistent with the presence of noncollinear spin structure originated from the increased surface due to the hollow morphology. Such a complex local spin structure evidenced from Mössbauer experiments was correlated with exchange bias coupling showing at low temperature by magnetization measurements. Monte Carlo simulations on a ferrimagnetic hollow nanoparticle unambiguously corroborate the critical role of the surface anisotropy on the noncollinearity of spin structure in our samples.</description><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKdoz-AlLWdR8OtagutVOgBytXaOE6bKsSRnYjy97gPlROnnd2d2dUMIfcMBgw4e0TlBttGqcEwAxAAF6THUsGDJIyiyzMOk2ty49wWIBLARI9s3ztboNJ0WhRatY6WNV1VrcV249Hcmpoud2Wu6cxUlfmmb1ibBm1bqkq7JzrdNZWxZb2mr7iutR_TSemMzbWl2NJ2ow8Kp7DSt-SqwMrpu1Ptk9Xz9GM8CxbLl_l4tAhQsKQNFIo8j7lvchSASZaDN-gtxgpwGCsd8kSnnCVxyFDzCJI0hZzxjBVMh6kWffJwvOu-ddNlsrHlF9ofabCUk_JzJI1dy66TIuJxyjwdjnRljXNWF2cBA7mPVvpo5T5aeYr278NhYzpbez__038Bvjt90w</recordid><startdate>20180405</startdate><enddate>20180405</enddate><creator>Sayed, F</creator><creator>Yaacoub, N</creator><creator>Labaye, Y</creator><creator>Hassan, R. Sayed</creator><creator>Singh, G</creator><creator>Kumar, P. Anil</creator><creator>Greneche, J. M</creator><creator>Mathieu, R</creator><creator>Hadjipanayis, G. C</creator><creator>Agostinelli, E</creator><creator>Peddis, D</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0001-9700-3344</orcidid><orcidid>https://orcid.org/0000-0002-5261-2047</orcidid><orcidid>https://orcid.org/0000-0003-0810-8860</orcidid></search><sort><creationdate>20180405</creationdate><title>Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale</title><author>Sayed, F ; Yaacoub, N ; Labaye, Y ; Hassan, R. Sayed ; Singh, G ; Kumar, P. Anil ; Greneche, J. M ; Mathieu, R ; Hadjipanayis, G. C ; Agostinelli, E ; Peddis, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayed, F</creatorcontrib><creatorcontrib>Yaacoub, N</creatorcontrib><creatorcontrib>Labaye, Y</creatorcontrib><creatorcontrib>Hassan, R. Sayed</creatorcontrib><creatorcontrib>Singh, G</creatorcontrib><creatorcontrib>Kumar, P. Anil</creatorcontrib><creatorcontrib>Greneche, J. M</creatorcontrib><creatorcontrib>Mathieu, R</creatorcontrib><creatorcontrib>Hadjipanayis, G. C</creatorcontrib><creatorcontrib>Agostinelli, E</creatorcontrib><creatorcontrib>Peddis, D</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayed, F</au><au>Yaacoub, N</au><au>Labaye, Y</au><au>Hassan, R. Sayed</au><au>Singh, G</au><au>Kumar, P. Anil</au><au>Greneche, J. M</au><au>Mathieu, R</au><au>Hadjipanayis, G. C</au><au>Agostinelli, E</au><au>Peddis, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-04-05</date><risdate>2018</risdate><volume>122</volume><issue>13</issue><spage>7516</spage><epage>7524</epage><pages>7516-7524</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>A detailed study of the structural and magnetic properties of polycrystalline hollow γ-Fe2O3 nanoparticles of ∼9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ∼1.4 nm, implying a very high surface/volume ratio. These hollow nanoparticles were investigated using zero-field and in-field 57Fe Mössbauer spectrometry. The zero-field hyperfine structure suggests some topological disorder, whereas the in-field one shows the presence of a comp magnetic structure that can be fairly described as two opposite pseudosperomagnetic sublattices attributed to octahedral and tetrahedral iron sites. Such an unusual feature is consistent with the presence of noncollinear spin structure originated from the increased surface due to the hollow morphology. Such a complex local spin structure evidenced from Mössbauer experiments was correlated with exchange bias coupling showing at low temperature by magnetization measurements. Monte Carlo simulations on a ferrimagnetic hollow nanoparticle unambiguously corroborate the critical role of the surface anisotropy on the noncollinearity of spin structure in our samples.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b00300</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9700-3344</orcidid><orcidid>https://orcid.org/0000-0002-5261-2047</orcidid><orcidid>https://orcid.org/0000-0003-0810-8860</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-04, Vol.122 (13), p.7516-7524
issn 1932-7447
1932-7455
1932-7455
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_352691
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Surface Effects in Ultrathin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Effects%20in%20Ultrathin%20Iron%20Oxide%20Hollow%20Nanoparticles:%20Exploring%20Magnetic%20Disorder%20at%20the%20Nanoscale&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sayed,%20F&rft.date=2018-04-05&rft.volume=122&rft.issue=13&rft.spage=7516&rft.epage=7524&rft.pages=7516-7524&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b00300&rft_dat=%3Cacs_swepu%3Ec937305187%3C/acs_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a317t-ca3dd62a31da30a7bd01020216c0a86ce427e9217641ae2507990d12b1f1e49e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true