Loading…
Pushdown automata, multiset automata, and Petri nets
In this paper, we consider various classes of (infinite-state) automata generated by simple rewrite transition systems. These classes are defined by two natural hierarchies, one given by interpreting concatenation of symbols in the rewrite system as sequential composition, and the other by interpret...
Saved in:
Published in: | Theoretical computer science 2001, Vol.256 (1), p.3-21 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-dc09ce9460cdb51d3d0f0148cd093019dc0c88dcaafb681c6128a6cff7a23b343 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-dc09ce9460cdb51d3d0f0148cd093019dc0c88dcaafb681c6128a6cff7a23b343 |
container_end_page | 21 |
container_issue | 1 |
container_start_page | 3 |
container_title | Theoretical computer science |
container_volume | 256 |
creator | Hirshfeld, Yoram Moller, Faron |
description | In this paper, we consider various classes of (infinite-state) automata generated by simple rewrite transition systems. These classes are defined by two natural hierarchies, one given by interpreting concatenation of symbols in the rewrite system as sequential composition, and the other by interpreting concatenation as parallel composition. In this way, we provide natural definitions for commutative (parallel) context-free automata, multiset (parallel, or random access, pushdown) automata, and Petri nets. We provide example automata which demonstrate the strictness of this hierarchy. In particular, we provide a proof of an earlier conjecture by Moller: that multiset automata form a proper subset of Petri nets. This result contrasts with the result of Caucal for the analogous question in the sequential case where the hierarchy collapses. |
doi_str_mv | 10.1016/S0304-3975(00)00099-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_36508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397500000992</els_id><sourcerecordid>26891550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-dc09ce9460cdb51d3d0f0148cd093019dc0c88dcaafb681c6128a6cff7a23b343</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhoMouK4-gtArUbQ6ado0uZJlPcKCCx5uQ5qkGum2aw4uvr3drYh3Xs0w880P8yF0iOEcA6YXj0AgTwkvi2OAEwDgPM220Aizsm8ynm-j0S-yi_a8f-8hKEo6Qvk8-jfdrdpExtAtZJBnySI2wXoT_oxkq5O5Cc4mrQl-H-3UsvHm4KeO0fPN9dP0Lp093N5PJ7NU5RkOqVbAleE5BaWrAmuioQacM6WBE8C83yvGtJKyrijDiuKMSarqupQZqUhOxuh0yPUrs4yVWDq7kO5LdNKKK_syEZ17FTEKQgtgPX000EvXfUTjg1hYr0zTyNZ00YuMMo6LAnqwGEDlOu-dqX-DMYi1UbExKta6BIDYGBVZf3c53Jn-509rnPDKmlYZbZ1RQejO_pPwDQfKfXk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26891550</pqid></control><display><type>article</type><title>Pushdown automata, multiset automata, and Petri nets</title><source>ScienceDirect Journals</source><creator>Hirshfeld, Yoram ; Moller, Faron</creator><creatorcontrib>Hirshfeld, Yoram ; Moller, Faron</creatorcontrib><description>In this paper, we consider various classes of (infinite-state) automata generated by simple rewrite transition systems. These classes are defined by two natural hierarchies, one given by interpreting concatenation of symbols in the rewrite system as sequential composition, and the other by interpreting concatenation as parallel composition. In this way, we provide natural definitions for commutative (parallel) context-free automata, multiset (parallel, or random access, pushdown) automata, and Petri nets. We provide example automata which demonstrate the strictness of this hierarchy. In particular, we provide a proof of an earlier conjecture by Moller: that multiset automata form a proper subset of Petri nets. This result contrasts with the result of Caucal for the analogous question in the sequential case where the hierarchy collapses.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(00)00099-2</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automata ; Bisimulation ; Concurrency ; Petri nets ; Rewrite systems</subject><ispartof>Theoretical computer science, 2001, Vol.256 (1), p.3-21</ispartof><rights>2001 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-dc09ce9460cdb51d3d0f0148cd093019dc0c88dcaafb681c6128a6cff7a23b343</citedby><cites>FETCH-LOGICAL-c421t-dc09ce9460cdb51d3d0f0148cd093019dc0c88dcaafb681c6128a6cff7a23b343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-36508$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirshfeld, Yoram</creatorcontrib><creatorcontrib>Moller, Faron</creatorcontrib><title>Pushdown automata, multiset automata, and Petri nets</title><title>Theoretical computer science</title><description>In this paper, we consider various classes of (infinite-state) automata generated by simple rewrite transition systems. These classes are defined by two natural hierarchies, one given by interpreting concatenation of symbols in the rewrite system as sequential composition, and the other by interpreting concatenation as parallel composition. In this way, we provide natural definitions for commutative (parallel) context-free automata, multiset (parallel, or random access, pushdown) automata, and Petri nets. We provide example automata which demonstrate the strictness of this hierarchy. In particular, we provide a proof of an earlier conjecture by Moller: that multiset automata form a proper subset of Petri nets. This result contrasts with the result of Caucal for the analogous question in the sequential case where the hierarchy collapses.</description><subject>Automata</subject><subject>Bisimulation</subject><subject>Concurrency</subject><subject>Petri nets</subject><subject>Rewrite systems</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkNtKxDAQhoMouK4-gtArUbQ6ado0uZJlPcKCCx5uQ5qkGum2aw4uvr3drYh3Xs0w880P8yF0iOEcA6YXj0AgTwkvi2OAEwDgPM220Aizsm8ynm-j0S-yi_a8f-8hKEo6Qvk8-jfdrdpExtAtZJBnySI2wXoT_oxkq5O5Cc4mrQl-H-3UsvHm4KeO0fPN9dP0Lp093N5PJ7NU5RkOqVbAleE5BaWrAmuioQacM6WBE8C83yvGtJKyrijDiuKMSarqupQZqUhOxuh0yPUrs4yVWDq7kO5LdNKKK_syEZ17FTEKQgtgPX000EvXfUTjg1hYr0zTyNZ00YuMMo6LAnqwGEDlOu-dqX-DMYi1UbExKta6BIDYGBVZf3c53Jn-509rnPDKmlYZbZ1RQejO_pPwDQfKfXk</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Hirshfeld, Yoram</creator><creator>Moller, Faron</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>2001</creationdate><title>Pushdown automata, multiset automata, and Petri nets</title><author>Hirshfeld, Yoram ; Moller, Faron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-dc09ce9460cdb51d3d0f0148cd093019dc0c88dcaafb681c6128a6cff7a23b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Automata</topic><topic>Bisimulation</topic><topic>Concurrency</topic><topic>Petri nets</topic><topic>Rewrite systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirshfeld, Yoram</creatorcontrib><creatorcontrib>Moller, Faron</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirshfeld, Yoram</au><au>Moller, Faron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pushdown automata, multiset automata, and Petri nets</atitle><jtitle>Theoretical computer science</jtitle><date>2001</date><risdate>2001</risdate><volume>256</volume><issue>1</issue><spage>3</spage><epage>21</epage><pages>3-21</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>In this paper, we consider various classes of (infinite-state) automata generated by simple rewrite transition systems. These classes are defined by two natural hierarchies, one given by interpreting concatenation of symbols in the rewrite system as sequential composition, and the other by interpreting concatenation as parallel composition. In this way, we provide natural definitions for commutative (parallel) context-free automata, multiset (parallel, or random access, pushdown) automata, and Petri nets. We provide example automata which demonstrate the strictness of this hierarchy. In particular, we provide a proof of an earlier conjecture by Moller: that multiset automata form a proper subset of Petri nets. This result contrasts with the result of Caucal for the analogous question in the sequential case where the hierarchy collapses.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(00)00099-2</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2001, Vol.256 (1), p.3-21 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_36508 |
source | ScienceDirect Journals |
subjects | Automata Bisimulation Concurrency Petri nets Rewrite systems |
title | Pushdown automata, multiset automata, and Petri nets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pushdown%20automata,%20multiset%20automata,%20and%20Petri%20nets&rft.jtitle=Theoretical%20computer%20science&rft.au=Hirshfeld,%20Yoram&rft.date=2001&rft.volume=256&rft.issue=1&rft.spage=3&rft.epage=21&rft.pages=3-21&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/S0304-3975(00)00099-2&rft_dat=%3Cproquest_swepu%3E26891550%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-dc09ce9460cdb51d3d0f0148cd093019dc0c88dcaafb681c6128a6cff7a23b343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26891550&rft_id=info:pmid/&rfr_iscdi=true |