Loading…

Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus

Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing t...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2013-06, Vol.32 (14), p.2500-2512
Main Authors: Persson, Emma, Waernbaum, Ingeborg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing these issues for matched and unmatched case‐control designs when utilizing the knowledge of the known prevalence of being a case. The estimators are implemented in simulations where their finite sample properties are studied and approximations of their variances are derived with the delta method. Also, we illustrate the methods by analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus using data from the Swedish Childhood Diabetes Register, a nationwide population‐based incidence register. Copyright © 2013 John Wiley & Sons, Ltd.
ISSN:0277-6715
1097-0258
1097-0258
DOI:10.1002/sim.5826