Loading…

Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus

Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing t...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2013-06, Vol.32 (14), p.2500-2512
Main Authors: Persson, Emma, Waernbaum, Ingeborg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973
cites cdi_FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973
container_end_page 2512
container_issue 14
container_start_page 2500
container_title Statistics in medicine
container_volume 32
creator Persson, Emma
Waernbaum, Ingeborg
description Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing these issues for matched and unmatched case‐control designs when utilizing the knowledge of the known prevalence of being a case. The estimators are implemented in simulations where their finite sample properties are studied and approximations of their variances are derived with the delta method. Also, we illustrate the methods by analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus using data from the Swedish Childhood Diabetes Register, a nationwide population‐based incidence register. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.5826
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_381278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2992169631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973</originalsourceid><addsrcrecordid>eNqNks1u1DAQgCMEotuCxBMgS1w4NMV24p9wK6WUSm1BorRHy3Emu26TeLEdLctj8MQ43WWRkJC4eCTP508z48myFwQfEYzpm2D7IyYpf5TNCK5EjimTj7MZpkLkXBC2l-2HcIcxIYyKp9keLTjmJSGz7OdpiLbX0Q5zpFGv_dwOukNGjyEF1zQB-ZR1yA4pb3SA3LghetehBoKdD2-RTg_WPyZBXACCtgUTkWtR51aotj4u0ArsfJHuhgfC23A_5eN6CYigxuoaIgTUQ9fZOIZn2ZNWdwGeb-NB9vXD6fXJx_zi09n5yfFFbsqK8ZwzAgUQXjPQRtN0FKAZoWkgjMgGak1ZLetKSkLLouSyEaIwsqItNbqsRHGQHW68YQXLsVZLnwbh18ppq97bm2Pl_FyNoyqSQMj_xPtRcZnKS_jrDb707tsIIareBpNa1AO4MShScIYZo9VkfvUXeudGn6b6QPFUPsblH6HxLgQP7a4CgtW0BSptgZq2IKEvt8Kx7qHZgb-_PQH5BljZDtb_FKkv55db4Za3IcL3Ha_9veKiEEzdXp0pefX53SW9vVHXxS8JxMs2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1366124004</pqid></control><display><type>article</type><title>Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Persson, Emma ; Waernbaum, Ingeborg</creator><creatorcontrib>Persson, Emma ; Waernbaum, Ingeborg</creatorcontrib><description>Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing these issues for matched and unmatched case‐control designs when utilizing the knowledge of the known prevalence of being a case. The estimators are implemented in simulations where their finite sample properties are studied and approximations of their variances are derived with the delta method. Also, we illustrate the methods by analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus using data from the Swedish Childhood Diabetes Register, a nationwide population‐based incidence register. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.5826</identifier><identifier>PMID: 23606411</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Biostatistics ; Birth weight ; Case-Control Studies ; causal effect ; Causality ; Child ; Clinical trials ; Computer Simulation ; design weighting ; Diabetes ; Diabetes Mellitus, Type 1 - epidemiology ; Diabetes Mellitus, Type 1 - etiology ; Estimating techniques ; Humans ; incidence register ; Infant, Low Birth Weight ; Infant, Newborn ; Likelihood Functions ; Logistic Models ; Medical statistics ; Odds Ratio ; potential outcomes ; Prevalence ; Registries - statistics &amp; numerical data ; Risk Factors ; Simulation ; Statistics ; statistik ; Sweden - epidemiology</subject><ispartof>Statistics in medicine, 2013-06, Vol.32 (14), p.2500-2512</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Jun 30, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973</citedby><cites>FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23606411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-68956$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-381278$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Persson, Emma</creatorcontrib><creatorcontrib>Waernbaum, Ingeborg</creatorcontrib><title>Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing these issues for matched and unmatched case‐control designs when utilizing the knowledge of the known prevalence of being a case. The estimators are implemented in simulations where their finite sample properties are studied and approximations of their variances are derived with the delta method. Also, we illustrate the methods by analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus using data from the Swedish Childhood Diabetes Register, a nationwide population‐based incidence register. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>Biostatistics</subject><subject>Birth weight</subject><subject>Case-Control Studies</subject><subject>causal effect</subject><subject>Causality</subject><subject>Child</subject><subject>Clinical trials</subject><subject>Computer Simulation</subject><subject>design weighting</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - epidemiology</subject><subject>Diabetes Mellitus, Type 1 - etiology</subject><subject>Estimating techniques</subject><subject>Humans</subject><subject>incidence register</subject><subject>Infant, Low Birth Weight</subject><subject>Infant, Newborn</subject><subject>Likelihood Functions</subject><subject>Logistic Models</subject><subject>Medical statistics</subject><subject>Odds Ratio</subject><subject>potential outcomes</subject><subject>Prevalence</subject><subject>Registries - statistics &amp; numerical data</subject><subject>Risk Factors</subject><subject>Simulation</subject><subject>Statistics</subject><subject>statistik</subject><subject>Sweden - epidemiology</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNks1u1DAQgCMEotuCxBMgS1w4NMV24p9wK6WUSm1BorRHy3Emu26TeLEdLctj8MQ43WWRkJC4eCTP508z48myFwQfEYzpm2D7IyYpf5TNCK5EjimTj7MZpkLkXBC2l-2HcIcxIYyKp9keLTjmJSGz7OdpiLbX0Q5zpFGv_dwOukNGjyEF1zQB-ZR1yA4pb3SA3LghetehBoKdD2-RTg_WPyZBXACCtgUTkWtR51aotj4u0ArsfJHuhgfC23A_5eN6CYigxuoaIgTUQ9fZOIZn2ZNWdwGeb-NB9vXD6fXJx_zi09n5yfFFbsqK8ZwzAgUQXjPQRtN0FKAZoWkgjMgGak1ZLetKSkLLouSyEaIwsqItNbqsRHGQHW68YQXLsVZLnwbh18ppq97bm2Pl_FyNoyqSQMj_xPtRcZnKS_jrDb707tsIIareBpNa1AO4MShScIYZo9VkfvUXeudGn6b6QPFUPsblH6HxLgQP7a4CgtW0BSptgZq2IKEvt8Kx7qHZgb-_PQH5BljZDtb_FKkv55db4Za3IcL3Ha_9veKiEEzdXp0pefX53SW9vVHXxS8JxMs2</recordid><startdate>20130630</startdate><enddate>20130630</enddate><creator>Persson, Emma</creator><creator>Waernbaum, Ingeborg</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><scope>DF2</scope></search><sort><creationdate>20130630</creationdate><title>Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus</title><author>Persson, Emma ; Waernbaum, Ingeborg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biostatistics</topic><topic>Birth weight</topic><topic>Case-Control Studies</topic><topic>causal effect</topic><topic>Causality</topic><topic>Child</topic><topic>Clinical trials</topic><topic>Computer Simulation</topic><topic>design weighting</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - epidemiology</topic><topic>Diabetes Mellitus, Type 1 - etiology</topic><topic>Estimating techniques</topic><topic>Humans</topic><topic>incidence register</topic><topic>Infant, Low Birth Weight</topic><topic>Infant, Newborn</topic><topic>Likelihood Functions</topic><topic>Logistic Models</topic><topic>Medical statistics</topic><topic>Odds Ratio</topic><topic>potential outcomes</topic><topic>Prevalence</topic><topic>Registries - statistics &amp; numerical data</topic><topic>Risk Factors</topic><topic>Simulation</topic><topic>Statistics</topic><topic>statistik</topic><topic>Sweden - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Persson, Emma</creatorcontrib><creatorcontrib>Waernbaum, Ingeborg</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persson, Emma</au><au>Waernbaum, Ingeborg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2013-06-30</date><risdate>2013</risdate><volume>32</volume><issue>14</issue><spage>2500</spage><epage>2512</epage><pages>2500-2512</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing these issues for matched and unmatched case‐control designs when utilizing the knowledge of the known prevalence of being a case. The estimators are implemented in simulations where their finite sample properties are studied and approximations of their variances are derived with the delta method. Also, we illustrate the methods by analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus using data from the Swedish Childhood Diabetes Register, a nationwide population‐based incidence register. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23606411</pmid><doi>10.1002/sim.5826</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2013-06, Vol.32 (14), p.2500-2512
issn 0277-6715
1097-0258
1097-0258
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_381278
source Wiley-Blackwell Read & Publish Collection
subjects Biostatistics
Birth weight
Case-Control Studies
causal effect
Causality
Child
Clinical trials
Computer Simulation
design weighting
Diabetes
Diabetes Mellitus, Type 1 - epidemiology
Diabetes Mellitus, Type 1 - etiology
Estimating techniques
Humans
incidence register
Infant, Low Birth Weight
Infant, Newborn
Likelihood Functions
Logistic Models
Medical statistics
Odds Ratio
potential outcomes
Prevalence
Registries - statistics & numerical data
Risk Factors
Simulation
Statistics
statistik
Sweden - epidemiology
title Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20a%20marginal%20causal%20odds%20ratio%20in%20a%20case-control%20design:%20analyzing%20the%20effect%20of%20low%20birth%20weight%20on%20the%20risk%20of%20type%201%20diabetes%20mellitus&rft.jtitle=Statistics%20in%20medicine&rft.au=Persson,%20Emma&rft.date=2013-06-30&rft.volume=32&rft.issue=14&rft.spage=2500&rft.epage=2512&rft.pages=2500-2512&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.5826&rft_dat=%3Cproquest_swepu%3E2992169631%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1366124004&rft_id=info:pmid/23606411&rfr_iscdi=true