Loading…
Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus
Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing t...
Saved in:
Published in: | Statistics in medicine 2013-06, Vol.32 (14), p.2500-2512 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973 |
---|---|
cites | cdi_FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973 |
container_end_page | 2512 |
container_issue | 14 |
container_start_page | 2500 |
container_title | Statistics in medicine |
container_volume | 32 |
creator | Persson, Emma Waernbaum, Ingeborg |
description | Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing these issues for matched and unmatched case‐control designs when utilizing the knowledge of the known prevalence of being a case. The estimators are implemented in simulations where their finite sample properties are studied and approximations of their variances are derived with the delta method. Also, we illustrate the methods by analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus using data from the Swedish Childhood Diabetes Register, a nationwide population‐based incidence register. Copyright © 2013 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.5826 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_381278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2992169631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973</originalsourceid><addsrcrecordid>eNqNks1u1DAQgCMEotuCxBMgS1w4NMV24p9wK6WUSm1BorRHy3Emu26TeLEdLctj8MQ43WWRkJC4eCTP508z48myFwQfEYzpm2D7IyYpf5TNCK5EjimTj7MZpkLkXBC2l-2HcIcxIYyKp9keLTjmJSGz7OdpiLbX0Q5zpFGv_dwOukNGjyEF1zQB-ZR1yA4pb3SA3LghetehBoKdD2-RTg_WPyZBXACCtgUTkWtR51aotj4u0ArsfJHuhgfC23A_5eN6CYigxuoaIgTUQ9fZOIZn2ZNWdwGeb-NB9vXD6fXJx_zi09n5yfFFbsqK8ZwzAgUQXjPQRtN0FKAZoWkgjMgGak1ZLetKSkLLouSyEaIwsqItNbqsRHGQHW68YQXLsVZLnwbh18ppq97bm2Pl_FyNoyqSQMj_xPtRcZnKS_jrDb707tsIIareBpNa1AO4MShScIYZo9VkfvUXeudGn6b6QPFUPsblH6HxLgQP7a4CgtW0BSptgZq2IKEvt8Kx7qHZgb-_PQH5BljZDtb_FKkv55db4Za3IcL3Ha_9veKiEEzdXp0pefX53SW9vVHXxS8JxMs2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1366124004</pqid></control><display><type>article</type><title>Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Persson, Emma ; Waernbaum, Ingeborg</creator><creatorcontrib>Persson, Emma ; Waernbaum, Ingeborg</creatorcontrib><description>Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing these issues for matched and unmatched case‐control designs when utilizing the knowledge of the known prevalence of being a case. The estimators are implemented in simulations where their finite sample properties are studied and approximations of their variances are derived with the delta method. Also, we illustrate the methods by analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus using data from the Swedish Childhood Diabetes Register, a nationwide population‐based incidence register. Copyright © 2013 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.5826</identifier><identifier>PMID: 23606411</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Biostatistics ; Birth weight ; Case-Control Studies ; causal effect ; Causality ; Child ; Clinical trials ; Computer Simulation ; design weighting ; Diabetes ; Diabetes Mellitus, Type 1 - epidemiology ; Diabetes Mellitus, Type 1 - etiology ; Estimating techniques ; Humans ; incidence register ; Infant, Low Birth Weight ; Infant, Newborn ; Likelihood Functions ; Logistic Models ; Medical statistics ; Odds Ratio ; potential outcomes ; Prevalence ; Registries - statistics & numerical data ; Risk Factors ; Simulation ; Statistics ; statistik ; Sweden - epidemiology</subject><ispartof>Statistics in medicine, 2013-06, Vol.32 (14), p.2500-2512</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Jun 30, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973</citedby><cites>FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23606411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-68956$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-381278$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Persson, Emma</creatorcontrib><creatorcontrib>Waernbaum, Ingeborg</creatorcontrib><title>Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing these issues for matched and unmatched case‐control designs when utilizing the knowledge of the known prevalence of being a case. The estimators are implemented in simulations where their finite sample properties are studied and approximations of their variances are derived with the delta method. Also, we illustrate the methods by analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus using data from the Swedish Childhood Diabetes Register, a nationwide population‐based incidence register. Copyright © 2013 John Wiley & Sons, Ltd.</description><subject>Biostatistics</subject><subject>Birth weight</subject><subject>Case-Control Studies</subject><subject>causal effect</subject><subject>Causality</subject><subject>Child</subject><subject>Clinical trials</subject><subject>Computer Simulation</subject><subject>design weighting</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - epidemiology</subject><subject>Diabetes Mellitus, Type 1 - etiology</subject><subject>Estimating techniques</subject><subject>Humans</subject><subject>incidence register</subject><subject>Infant, Low Birth Weight</subject><subject>Infant, Newborn</subject><subject>Likelihood Functions</subject><subject>Logistic Models</subject><subject>Medical statistics</subject><subject>Odds Ratio</subject><subject>potential outcomes</subject><subject>Prevalence</subject><subject>Registries - statistics & numerical data</subject><subject>Risk Factors</subject><subject>Simulation</subject><subject>Statistics</subject><subject>statistik</subject><subject>Sweden - epidemiology</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNks1u1DAQgCMEotuCxBMgS1w4NMV24p9wK6WUSm1BorRHy3Emu26TeLEdLctj8MQ43WWRkJC4eCTP508z48myFwQfEYzpm2D7IyYpf5TNCK5EjimTj7MZpkLkXBC2l-2HcIcxIYyKp9keLTjmJSGz7OdpiLbX0Q5zpFGv_dwOukNGjyEF1zQB-ZR1yA4pb3SA3LghetehBoKdD2-RTg_WPyZBXACCtgUTkWtR51aotj4u0ArsfJHuhgfC23A_5eN6CYigxuoaIgTUQ9fZOIZn2ZNWdwGeb-NB9vXD6fXJx_zi09n5yfFFbsqK8ZwzAgUQXjPQRtN0FKAZoWkgjMgGak1ZLetKSkLLouSyEaIwsqItNbqsRHGQHW68YQXLsVZLnwbh18ppq97bm2Pl_FyNoyqSQMj_xPtRcZnKS_jrDb707tsIIareBpNa1AO4MShScIYZo9VkfvUXeudGn6b6QPFUPsblH6HxLgQP7a4CgtW0BSptgZq2IKEvt8Kx7qHZgb-_PQH5BljZDtb_FKkv55db4Za3IcL3Ha_9veKiEEzdXp0pefX53SW9vVHXxS8JxMs2</recordid><startdate>20130630</startdate><enddate>20130630</enddate><creator>Persson, Emma</creator><creator>Waernbaum, Ingeborg</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><scope>DF2</scope></search><sort><creationdate>20130630</creationdate><title>Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus</title><author>Persson, Emma ; Waernbaum, Ingeborg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biostatistics</topic><topic>Birth weight</topic><topic>Case-Control Studies</topic><topic>causal effect</topic><topic>Causality</topic><topic>Child</topic><topic>Clinical trials</topic><topic>Computer Simulation</topic><topic>design weighting</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - epidemiology</topic><topic>Diabetes Mellitus, Type 1 - etiology</topic><topic>Estimating techniques</topic><topic>Humans</topic><topic>incidence register</topic><topic>Infant, Low Birth Weight</topic><topic>Infant, Newborn</topic><topic>Likelihood Functions</topic><topic>Logistic Models</topic><topic>Medical statistics</topic><topic>Odds Ratio</topic><topic>potential outcomes</topic><topic>Prevalence</topic><topic>Registries - statistics & numerical data</topic><topic>Risk Factors</topic><topic>Simulation</topic><topic>Statistics</topic><topic>statistik</topic><topic>Sweden - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Persson, Emma</creatorcontrib><creatorcontrib>Waernbaum, Ingeborg</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persson, Emma</au><au>Waernbaum, Ingeborg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2013-06-30</date><risdate>2013</risdate><volume>32</volume><issue>14</issue><spage>2500</spage><epage>2512</epage><pages>2500-2512</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Estimation of marginal causal effects from case‐control data has two complications: (i) confounding due to the fact that the exposure under study is not randomized, and (ii) bias from the case‐control sampling scheme. In this paper, we study estimators of the marginal causal odds ratio, addressing these issues for matched and unmatched case‐control designs when utilizing the knowledge of the known prevalence of being a case. The estimators are implemented in simulations where their finite sample properties are studied and approximations of their variances are derived with the delta method. Also, we illustrate the methods by analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus using data from the Swedish Childhood Diabetes Register, a nationwide population‐based incidence register. Copyright © 2013 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23606411</pmid><doi>10.1002/sim.5826</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2013-06, Vol.32 (14), p.2500-2512 |
issn | 0277-6715 1097-0258 1097-0258 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_381278 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Biostatistics Birth weight Case-Control Studies causal effect Causality Child Clinical trials Computer Simulation design weighting Diabetes Diabetes Mellitus, Type 1 - epidemiology Diabetes Mellitus, Type 1 - etiology Estimating techniques Humans incidence register Infant, Low Birth Weight Infant, Newborn Likelihood Functions Logistic Models Medical statistics Odds Ratio potential outcomes Prevalence Registries - statistics & numerical data Risk Factors Simulation Statistics statistik Sweden - epidemiology |
title | Estimating a marginal causal odds ratio in a case-control design: analyzing the effect of low birth weight on the risk of type 1 diabetes mellitus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20a%20marginal%20causal%20odds%20ratio%20in%20a%20case-control%20design:%20analyzing%20the%20effect%20of%20low%20birth%20weight%20on%20the%20risk%20of%20type%201%20diabetes%20mellitus&rft.jtitle=Statistics%20in%20medicine&rft.au=Persson,%20Emma&rft.date=2013-06-30&rft.volume=32&rft.issue=14&rft.spage=2500&rft.epage=2512&rft.pages=2500-2512&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.5826&rft_dat=%3Cproquest_swepu%3E2992169631%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4956-651e3e16b5eaca2eac3ea512100518deba25b8b9881243468d773c892f2ca4973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1366124004&rft_id=info:pmid/23606411&rfr_iscdi=true |