Loading…
Coherent charge and magnetic ordering in Ho/Y superlattice revealed by element-selective x-ray scattering
Magnetic rare-earth/nonmagnetic metal superlattices are well-known to display chiral spin helices in the rare-earth layers that propagate coherently across the nonmagnetic layers. However, the underlying mechanism that preserves the magnetic phase and chirality coherence across the nonmagnetic layer...
Saved in:
Published in: | Physical review. B 2019-10, Vol.100 (13), Article 134417 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnetic rare-earth/nonmagnetic metal superlattices are well-known to display chiral spin helices in the rare-earth layers that propagate coherently across the nonmagnetic layers. However, the underlying mechanism that preserves the magnetic phase and chirality coherence across the nonmagnetic layers has remained elusive. In this paper, we use resonant and element-specific x-ray scattering to evidence directly the formation of two fundamentally different long-range modulations in a holmium/yttrium (Ho/Y) multilayer: the known Ho chiral spin helix with periodicity 25 Å and a newly observed charge density wave with periodicity 16 Å that propagates through both the Ho and nonmagnetic Y layer. With x-ray circular magnetic dichroism measurements ruling out the existence of a magnetic proximity effect induced moment in the nonmagnetic Y layers, we propose that the charge density wave is also chiral, thus providing the means for the transmittance of magnetic chirality coherence between Ho layers. |
---|---|
ISSN: | 2469-9950 2469-9969 2469-9969 |
DOI: | 10.1103/PhysRevB.100.134417 |