Loading…

Coherent charge and magnetic ordering in Ho/Y superlattice revealed by element-selective x-ray scattering

Magnetic rare-earth/nonmagnetic metal superlattices are well-known to display chiral spin helices in the rare-earth layers that propagate coherently across the nonmagnetic layers. However, the underlying mechanism that preserves the magnetic phase and chirality coherence across the nonmagnetic layer...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2019-10, Vol.100 (13), Article 134417
Main Authors: Ukleev, V., Tarnavich, V., Tartakovskaya, E., Lott, D., Kapaklis, V., Oleshkevych, A., Gargiani, P., Valvidares, M., White, J. S., Grigoriev, S. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetic rare-earth/nonmagnetic metal superlattices are well-known to display chiral spin helices in the rare-earth layers that propagate coherently across the nonmagnetic layers. However, the underlying mechanism that preserves the magnetic phase and chirality coherence across the nonmagnetic layers has remained elusive. In this paper, we use resonant and element-specific x-ray scattering to evidence directly the formation of two fundamentally different long-range modulations in a holmium/yttrium (Ho/Y) multilayer: the known Ho chiral spin helix with periodicity 25 Å and a newly observed charge density wave with periodicity 16 Å that propagates through both the Ho and nonmagnetic Y layer. With x-ray circular magnetic dichroism measurements ruling out the existence of a magnetic proximity effect induced moment in the nonmagnetic Y layers, we propose that the charge density wave is also chiral, thus providing the means for the transmittance of magnetic chirality coherence between Ho layers.
ISSN:2469-9950
2469-9969
2469-9969
DOI:10.1103/PhysRevB.100.134417