Loading…

Sensing of volatile organic compounds on two-dimensional nitrogenated holey graphene, graphdiyne, and their heterostructure

Gas-sensing properties of nitrogenated holey graphene (C2N), graphdiyne (GDY) and their van der Waals heterostructure (C2N…GDY) have been studied towards particular volatile organic compounds (VOCs) by means of spin-polarized, dispersion-corrected DFT calculations. We find that VOCs such as acetone,...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2020-08, Vol.163, p.213-223
Main Authors: Hussain, Tanveer, Sajjad, Muhammad, Singh, Deobrat, Bae, Hyeonhu, Lee, Hoonkyung, Larsson, J. Andreas, Ahuja, Rajeev, Karton, Amir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gas-sensing properties of nitrogenated holey graphene (C2N), graphdiyne (GDY) and their van der Waals heterostructure (C2N…GDY) have been studied towards particular volatile organic compounds (VOCs) by means of spin-polarized, dispersion-corrected DFT calculations. We find that VOCs such as acetone, ethanol, propanal, and toluene interact weakly with the GDY monolayer; however, the bindings are significantly enhanced with the C2N monolayer and the hybrid C2N…GDY heterostructure in AB stacking. Electron localization function (ELF) analysis shows that all VOCs are van der Waals bound (physical binding) to the 2D materials, which result in significant changes of the charge density of C2N and GDY monolayers and the C2N…GDY heterostructure. These changes alter the electronic properties of C2N and GDY, and the C2N…GDY heterostructure, upon VOC adsorption, which are investigated by density-of-states plots. We further apply thermodynamic analysis to study the sensing characteristics of VOCs under varied conditions of pressure and temperature. Our findings clearly indicate that the C2N…GDY heterostructure is a promising material for sensing of certain VOCs. [Display omitted]
ISSN:0008-6223
1873-3891
1873-3891
DOI:10.1016/j.carbon.2020.02.078