Loading…

Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy

In phase-field theories of fracture, decompositions of the strain energy density into tensile and compressive parts are often necessary to avoid interpenetration of cracked surfaces and to select physically trustworthy crack paths. General formulations accounting for orthotropy of the well-known spe...

Full description

Saved in:
Bibliographic Details
Published in:International journal of solids and structures 2020-07, Vol.196-197, p.140-153
Main Authors: Dijk, N.P. van, Espadas-Escalante, J.J., Isaksson, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3
cites cdi_FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3
container_end_page 153
container_issue
container_start_page 140
container_title International journal of solids and structures
container_volume 196-197
creator Dijk, N.P. van
Espadas-Escalante, J.J.
Isaksson, P.
description In phase-field theories of fracture, decompositions of the strain energy density into tensile and compressive parts are often necessary to avoid interpenetration of cracked surfaces and to select physically trustworthy crack paths. General formulations accounting for orthotropy of the well-known spectral and hydrostatic-deviatoric decompositions of the strain tensor (often referred to as Miehe and Amor decompositions) are presented in this study. Additionally, a new principal energy decomposition based on spectral decomposition of the stiffness tensor is proposed for general anisotropic materials. The decompositions are evaluated numerically in a quadratic specimen with an initial stationary edge crack subject to both tensile and shear global remote loading. It is shown that when an isotropic case is considered, solutions agree well with results reported elsewhere for both the spectral and the hydrostatic-deviatoric approaches. The principal energy decomposition results in similar crack paths as the other approaches, with only subtle differences. When orthotropy is considered, however, significant differences in the resulting crack paths as well as global force-displacement behavior are obtained, especially when the crack is subjected to shear loading. For global tensile loading, the decompositions result in similar crack paths and force-displacement relations. The results provide a step forward when developing phase-field fracture theories for brittle materials with an orthotropic nature and highlight the importance of a proper decomposition of the strain energy density.
doi_str_mv 10.1016/j.ijsolstr.2020.04.022
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_417183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768320301396</els_id><sourcerecordid>2440489256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3</originalsourceid><addsrcrecordid>eNqFkE1P4zAQhi0EEuXjL6BIXElwbMdJb4tYWFaqxIGPq2U7k9ZRG2fHDqj_HldZ9roH67U1z7zjeQm5KmlR0lLe9oXrg9-GiAWjjBZUFJSxI7Iom3qZs1LIY7KgqZLXsuGn5CyEnlIq-JIuiH2JqN2QwQC43mctDMHFg1q_G326Oz-ELAHjRgfIOwfbNutQ2zghZHEDHh2ErPOYeYwbH9GP-0wPbTouzM8LctLpbYDLv3pO3h4fXu-f8tXzr9_3d6vcClbFXFfLqhGCC8kqY6TVFasbkbTtDEgutKCCMSOsrU0lTE1ZbRrLgXdM1rw1_JzczL7hE8bJqBHdTuNeee3UT_d-pzyu1TQpUdZlwxN-PeMj-j8ThKh6P-GQfqiYSLOaJatkouRMWfQhIHT_bEuqDvmrXn3nrw75KypUyj81_pgbIa384QBVsA4GC61DsFG13v3P4gtPBJR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440489256</pqid></control><display><type>article</type><title>Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy</title><source>ScienceDirect Journals</source><creator>Dijk, N.P. van ; Espadas-Escalante, J.J. ; Isaksson, P.</creator><creatorcontrib>Dijk, N.P. van ; Espadas-Escalante, J.J. ; Isaksson, P.</creatorcontrib><description>In phase-field theories of fracture, decompositions of the strain energy density into tensile and compressive parts are often necessary to avoid interpenetration of cracked surfaces and to select physically trustworthy crack paths. General formulations accounting for orthotropy of the well-known spectral and hydrostatic-deviatoric decompositions of the strain tensor (often referred to as Miehe and Amor decompositions) are presented in this study. Additionally, a new principal energy decomposition based on spectral decomposition of the stiffness tensor is proposed for general anisotropic materials. The decompositions are evaluated numerically in a quadratic specimen with an initial stationary edge crack subject to both tensile and shear global remote loading. It is shown that when an isotropic case is considered, solutions agree well with results reported elsewhere for both the spectral and the hydrostatic-deviatoric approaches. The principal energy decomposition results in similar crack paths as the other approaches, with only subtle differences. When orthotropy is considered, however, significant differences in the resulting crack paths as well as global force-displacement behavior are obtained, especially when the crack is subjected to shear loading. For global tensile loading, the decompositions result in similar crack paths and force-displacement relations. The results provide a step forward when developing phase-field fracture theories for brittle materials with an orthotropic nature and highlight the importance of a proper decomposition of the strain energy density.</description><identifier>ISSN: 0020-7683</identifier><identifier>ISSN: 1879-2146</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2020.04.022</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anisotropy ; Brittle materials ; Crack paths ; Decomposition ; Edge cracks ; Finite element ; Flux density ; Fracture ; Orthotropy ; Phase field ; Spectra ; Stiffness ; Strain energy ; Strain energy decomposition ; Tensors</subject><ispartof>International journal of solids and structures, 2020-07, Vol.196-197, p.140-153</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3</citedby><cites>FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3</cites><orcidid>0000-0002-4635-2576 ; 0000-0001-7633-3344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417183$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Dijk, N.P. van</creatorcontrib><creatorcontrib>Espadas-Escalante, J.J.</creatorcontrib><creatorcontrib>Isaksson, P.</creatorcontrib><title>Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy</title><title>International journal of solids and structures</title><description>In phase-field theories of fracture, decompositions of the strain energy density into tensile and compressive parts are often necessary to avoid interpenetration of cracked surfaces and to select physically trustworthy crack paths. General formulations accounting for orthotropy of the well-known spectral and hydrostatic-deviatoric decompositions of the strain tensor (often referred to as Miehe and Amor decompositions) are presented in this study. Additionally, a new principal energy decomposition based on spectral decomposition of the stiffness tensor is proposed for general anisotropic materials. The decompositions are evaluated numerically in a quadratic specimen with an initial stationary edge crack subject to both tensile and shear global remote loading. It is shown that when an isotropic case is considered, solutions agree well with results reported elsewhere for both the spectral and the hydrostatic-deviatoric approaches. The principal energy decomposition results in similar crack paths as the other approaches, with only subtle differences. When orthotropy is considered, however, significant differences in the resulting crack paths as well as global force-displacement behavior are obtained, especially when the crack is subjected to shear loading. For global tensile loading, the decompositions result in similar crack paths and force-displacement relations. The results provide a step forward when developing phase-field fracture theories for brittle materials with an orthotropic nature and highlight the importance of a proper decomposition of the strain energy density.</description><subject>Anisotropy</subject><subject>Brittle materials</subject><subject>Crack paths</subject><subject>Decomposition</subject><subject>Edge cracks</subject><subject>Finite element</subject><subject>Flux density</subject><subject>Fracture</subject><subject>Orthotropy</subject><subject>Phase field</subject><subject>Spectra</subject><subject>Stiffness</subject><subject>Strain energy</subject><subject>Strain energy decomposition</subject><subject>Tensors</subject><issn>0020-7683</issn><issn>1879-2146</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P4zAQhi0EEuXjL6BIXElwbMdJb4tYWFaqxIGPq2U7k9ZRG2fHDqj_HldZ9roH67U1z7zjeQm5KmlR0lLe9oXrg9-GiAWjjBZUFJSxI7Iom3qZs1LIY7KgqZLXsuGn5CyEnlIq-JIuiH2JqN2QwQC43mctDMHFg1q_G326Oz-ELAHjRgfIOwfbNutQ2zghZHEDHh2ErPOYeYwbH9GP-0wPbTouzM8LctLpbYDLv3pO3h4fXu-f8tXzr9_3d6vcClbFXFfLqhGCC8kqY6TVFasbkbTtDEgutKCCMSOsrU0lTE1ZbRrLgXdM1rw1_JzczL7hE8bJqBHdTuNeee3UT_d-pzyu1TQpUdZlwxN-PeMj-j8ThKh6P-GQfqiYSLOaJatkouRMWfQhIHT_bEuqDvmrXn3nrw75KypUyj81_pgbIa384QBVsA4GC61DsFG13v3P4gtPBJR8</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Dijk, N.P. van</creator><creator>Espadas-Escalante, J.J.</creator><creator>Isaksson, P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-4635-2576</orcidid><orcidid>https://orcid.org/0000-0001-7633-3344</orcidid></search><sort><creationdate>20200701</creationdate><title>Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy</title><author>Dijk, N.P. van ; Espadas-Escalante, J.J. ; Isaksson, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Brittle materials</topic><topic>Crack paths</topic><topic>Decomposition</topic><topic>Edge cracks</topic><topic>Finite element</topic><topic>Flux density</topic><topic>Fracture</topic><topic>Orthotropy</topic><topic>Phase field</topic><topic>Spectra</topic><topic>Stiffness</topic><topic>Strain energy</topic><topic>Strain energy decomposition</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dijk, N.P. van</creatorcontrib><creatorcontrib>Espadas-Escalante, J.J.</creatorcontrib><creatorcontrib>Isaksson, P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dijk, N.P. van</au><au>Espadas-Escalante, J.J.</au><au>Isaksson, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy</atitle><jtitle>International journal of solids and structures</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>196-197</volume><spage>140</spage><epage>153</epage><pages>140-153</pages><issn>0020-7683</issn><issn>1879-2146</issn><eissn>1879-2146</eissn><abstract>In phase-field theories of fracture, decompositions of the strain energy density into tensile and compressive parts are often necessary to avoid interpenetration of cracked surfaces and to select physically trustworthy crack paths. General formulations accounting for orthotropy of the well-known spectral and hydrostatic-deviatoric decompositions of the strain tensor (often referred to as Miehe and Amor decompositions) are presented in this study. Additionally, a new principal energy decomposition based on spectral decomposition of the stiffness tensor is proposed for general anisotropic materials. The decompositions are evaluated numerically in a quadratic specimen with an initial stationary edge crack subject to both tensile and shear global remote loading. It is shown that when an isotropic case is considered, solutions agree well with results reported elsewhere for both the spectral and the hydrostatic-deviatoric approaches. The principal energy decomposition results in similar crack paths as the other approaches, with only subtle differences. When orthotropy is considered, however, significant differences in the resulting crack paths as well as global force-displacement behavior are obtained, especially when the crack is subjected to shear loading. For global tensile loading, the decompositions result in similar crack paths and force-displacement relations. The results provide a step forward when developing phase-field fracture theories for brittle materials with an orthotropic nature and highlight the importance of a proper decomposition of the strain energy density.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2020.04.022</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4635-2576</orcidid><orcidid>https://orcid.org/0000-0001-7633-3344</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2020-07, Vol.196-197, p.140-153
issn 0020-7683
1879-2146
1879-2146
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_417183
source ScienceDirect Journals
subjects Anisotropy
Brittle materials
Crack paths
Decomposition
Edge cracks
Finite element
Flux density
Fracture
Orthotropy
Phase field
Spectra
Stiffness
Strain energy
Strain energy decomposition
Tensors
title Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20energy%20density%20decompositions%20in%20phase-field%20fracture%20theories%20for%20orthotropy%20and%20anisotropy&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Dijk,%20N.P.%20van&rft.date=2020-07-01&rft.volume=196-197&rft.spage=140&rft.epage=153&rft.pages=140-153&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2020.04.022&rft_dat=%3Cproquest_swepu%3E2440489256%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440489256&rft_id=info:pmid/&rfr_iscdi=true