Loading…
Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy
In phase-field theories of fracture, decompositions of the strain energy density into tensile and compressive parts are often necessary to avoid interpenetration of cracked surfaces and to select physically trustworthy crack paths. General formulations accounting for orthotropy of the well-known spe...
Saved in:
Published in: | International journal of solids and structures 2020-07, Vol.196-197, p.140-153 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3 |
container_end_page | 153 |
container_issue | |
container_start_page | 140 |
container_title | International journal of solids and structures |
container_volume | 196-197 |
creator | Dijk, N.P. van Espadas-Escalante, J.J. Isaksson, P. |
description | In phase-field theories of fracture, decompositions of the strain energy density into tensile and compressive parts are often necessary to avoid interpenetration of cracked surfaces and to select physically trustworthy crack paths. General formulations accounting for orthotropy of the well-known spectral and hydrostatic-deviatoric decompositions of the strain tensor (often referred to as Miehe and Amor decompositions) are presented in this study. Additionally, a new principal energy decomposition based on spectral decomposition of the stiffness tensor is proposed for general anisotropic materials. The decompositions are evaluated numerically in a quadratic specimen with an initial stationary edge crack subject to both tensile and shear global remote loading. It is shown that when an isotropic case is considered, solutions agree well with results reported elsewhere for both the spectral and the hydrostatic-deviatoric approaches. The principal energy decomposition results in similar crack paths as the other approaches, with only subtle differences. When orthotropy is considered, however, significant differences in the resulting crack paths as well as global force-displacement behavior are obtained, especially when the crack is subjected to shear loading. For global tensile loading, the decompositions result in similar crack paths and force-displacement relations. The results provide a step forward when developing phase-field fracture theories for brittle materials with an orthotropic nature and highlight the importance of a proper decomposition of the strain energy density. |
doi_str_mv | 10.1016/j.ijsolstr.2020.04.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_417183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768320301396</els_id><sourcerecordid>2440489256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3</originalsourceid><addsrcrecordid>eNqFkE1P4zAQhi0EEuXjL6BIXElwbMdJb4tYWFaqxIGPq2U7k9ZRG2fHDqj_HldZ9roH67U1z7zjeQm5KmlR0lLe9oXrg9-GiAWjjBZUFJSxI7Iom3qZs1LIY7KgqZLXsuGn5CyEnlIq-JIuiH2JqN2QwQC43mctDMHFg1q_G326Oz-ELAHjRgfIOwfbNutQ2zghZHEDHh2ErPOYeYwbH9GP-0wPbTouzM8LctLpbYDLv3pO3h4fXu-f8tXzr9_3d6vcClbFXFfLqhGCC8kqY6TVFasbkbTtDEgutKCCMSOsrU0lTE1ZbRrLgXdM1rw1_JzczL7hE8bJqBHdTuNeee3UT_d-pzyu1TQpUdZlwxN-PeMj-j8ThKh6P-GQfqiYSLOaJatkouRMWfQhIHT_bEuqDvmrXn3nrw75KypUyj81_pgbIa384QBVsA4GC61DsFG13v3P4gtPBJR8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440489256</pqid></control><display><type>article</type><title>Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy</title><source>ScienceDirect Journals</source><creator>Dijk, N.P. van ; Espadas-Escalante, J.J. ; Isaksson, P.</creator><creatorcontrib>Dijk, N.P. van ; Espadas-Escalante, J.J. ; Isaksson, P.</creatorcontrib><description>In phase-field theories of fracture, decompositions of the strain energy density into tensile and compressive parts are often necessary to avoid interpenetration of cracked surfaces and to select physically trustworthy crack paths. General formulations accounting for orthotropy of the well-known spectral and hydrostatic-deviatoric decompositions of the strain tensor (often referred to as Miehe and Amor decompositions) are presented in this study. Additionally, a new principal energy decomposition based on spectral decomposition of the stiffness tensor is proposed for general anisotropic materials. The decompositions are evaluated numerically in a quadratic specimen with an initial stationary edge crack subject to both tensile and shear global remote loading. It is shown that when an isotropic case is considered, solutions agree well with results reported elsewhere for both the spectral and the hydrostatic-deviatoric approaches. The principal energy decomposition results in similar crack paths as the other approaches, with only subtle differences. When orthotropy is considered, however, significant differences in the resulting crack paths as well as global force-displacement behavior are obtained, especially when the crack is subjected to shear loading. For global tensile loading, the decompositions result in similar crack paths and force-displacement relations. The results provide a step forward when developing phase-field fracture theories for brittle materials with an orthotropic nature and highlight the importance of a proper decomposition of the strain energy density.</description><identifier>ISSN: 0020-7683</identifier><identifier>ISSN: 1879-2146</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2020.04.022</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anisotropy ; Brittle materials ; Crack paths ; Decomposition ; Edge cracks ; Finite element ; Flux density ; Fracture ; Orthotropy ; Phase field ; Spectra ; Stiffness ; Strain energy ; Strain energy decomposition ; Tensors</subject><ispartof>International journal of solids and structures, 2020-07, Vol.196-197, p.140-153</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3</citedby><cites>FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3</cites><orcidid>0000-0002-4635-2576 ; 0000-0001-7633-3344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417183$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Dijk, N.P. van</creatorcontrib><creatorcontrib>Espadas-Escalante, J.J.</creatorcontrib><creatorcontrib>Isaksson, P.</creatorcontrib><title>Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy</title><title>International journal of solids and structures</title><description>In phase-field theories of fracture, decompositions of the strain energy density into tensile and compressive parts are often necessary to avoid interpenetration of cracked surfaces and to select physically trustworthy crack paths. General formulations accounting for orthotropy of the well-known spectral and hydrostatic-deviatoric decompositions of the strain tensor (often referred to as Miehe and Amor decompositions) are presented in this study. Additionally, a new principal energy decomposition based on spectral decomposition of the stiffness tensor is proposed for general anisotropic materials. The decompositions are evaluated numerically in a quadratic specimen with an initial stationary edge crack subject to both tensile and shear global remote loading. It is shown that when an isotropic case is considered, solutions agree well with results reported elsewhere for both the spectral and the hydrostatic-deviatoric approaches. The principal energy decomposition results in similar crack paths as the other approaches, with only subtle differences. When orthotropy is considered, however, significant differences in the resulting crack paths as well as global force-displacement behavior are obtained, especially when the crack is subjected to shear loading. For global tensile loading, the decompositions result in similar crack paths and force-displacement relations. The results provide a step forward when developing phase-field fracture theories for brittle materials with an orthotropic nature and highlight the importance of a proper decomposition of the strain energy density.</description><subject>Anisotropy</subject><subject>Brittle materials</subject><subject>Crack paths</subject><subject>Decomposition</subject><subject>Edge cracks</subject><subject>Finite element</subject><subject>Flux density</subject><subject>Fracture</subject><subject>Orthotropy</subject><subject>Phase field</subject><subject>Spectra</subject><subject>Stiffness</subject><subject>Strain energy</subject><subject>Strain energy decomposition</subject><subject>Tensors</subject><issn>0020-7683</issn><issn>1879-2146</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P4zAQhi0EEuXjL6BIXElwbMdJb4tYWFaqxIGPq2U7k9ZRG2fHDqj_HldZ9roH67U1z7zjeQm5KmlR0lLe9oXrg9-GiAWjjBZUFJSxI7Iom3qZs1LIY7KgqZLXsuGn5CyEnlIq-JIuiH2JqN2QwQC43mctDMHFg1q_G326Oz-ELAHjRgfIOwfbNutQ2zghZHEDHh2ErPOYeYwbH9GP-0wPbTouzM8LctLpbYDLv3pO3h4fXu-f8tXzr9_3d6vcClbFXFfLqhGCC8kqY6TVFasbkbTtDEgutKCCMSOsrU0lTE1ZbRrLgXdM1rw1_JzczL7hE8bJqBHdTuNeee3UT_d-pzyu1TQpUdZlwxN-PeMj-j8ThKh6P-GQfqiYSLOaJatkouRMWfQhIHT_bEuqDvmrXn3nrw75KypUyj81_pgbIa384QBVsA4GC61DsFG13v3P4gtPBJR8</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Dijk, N.P. van</creator><creator>Espadas-Escalante, J.J.</creator><creator>Isaksson, P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-4635-2576</orcidid><orcidid>https://orcid.org/0000-0001-7633-3344</orcidid></search><sort><creationdate>20200701</creationdate><title>Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy</title><author>Dijk, N.P. van ; Espadas-Escalante, J.J. ; Isaksson, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Brittle materials</topic><topic>Crack paths</topic><topic>Decomposition</topic><topic>Edge cracks</topic><topic>Finite element</topic><topic>Flux density</topic><topic>Fracture</topic><topic>Orthotropy</topic><topic>Phase field</topic><topic>Spectra</topic><topic>Stiffness</topic><topic>Strain energy</topic><topic>Strain energy decomposition</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dijk, N.P. van</creatorcontrib><creatorcontrib>Espadas-Escalante, J.J.</creatorcontrib><creatorcontrib>Isaksson, P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dijk, N.P. van</au><au>Espadas-Escalante, J.J.</au><au>Isaksson, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy</atitle><jtitle>International journal of solids and structures</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>196-197</volume><spage>140</spage><epage>153</epage><pages>140-153</pages><issn>0020-7683</issn><issn>1879-2146</issn><eissn>1879-2146</eissn><abstract>In phase-field theories of fracture, decompositions of the strain energy density into tensile and compressive parts are often necessary to avoid interpenetration of cracked surfaces and to select physically trustworthy crack paths. General formulations accounting for orthotropy of the well-known spectral and hydrostatic-deviatoric decompositions of the strain tensor (often referred to as Miehe and Amor decompositions) are presented in this study. Additionally, a new principal energy decomposition based on spectral decomposition of the stiffness tensor is proposed for general anisotropic materials. The decompositions are evaluated numerically in a quadratic specimen with an initial stationary edge crack subject to both tensile and shear global remote loading. It is shown that when an isotropic case is considered, solutions agree well with results reported elsewhere for both the spectral and the hydrostatic-deviatoric approaches. The principal energy decomposition results in similar crack paths as the other approaches, with only subtle differences. When orthotropy is considered, however, significant differences in the resulting crack paths as well as global force-displacement behavior are obtained, especially when the crack is subjected to shear loading. For global tensile loading, the decompositions result in similar crack paths and force-displacement relations. The results provide a step forward when developing phase-field fracture theories for brittle materials with an orthotropic nature and highlight the importance of a proper decomposition of the strain energy density.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2020.04.022</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4635-2576</orcidid><orcidid>https://orcid.org/0000-0001-7633-3344</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2020-07, Vol.196-197, p.140-153 |
issn | 0020-7683 1879-2146 1879-2146 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_417183 |
source | ScienceDirect Journals |
subjects | Anisotropy Brittle materials Crack paths Decomposition Edge cracks Finite element Flux density Fracture Orthotropy Phase field Spectra Stiffness Strain energy Strain energy decomposition Tensors |
title | Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20energy%20density%20decompositions%20in%20phase-field%20fracture%20theories%20for%20orthotropy%20and%20anisotropy&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Dijk,%20N.P.%20van&rft.date=2020-07-01&rft.volume=196-197&rft.spage=140&rft.epage=153&rft.pages=140-153&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2020.04.022&rft_dat=%3Cproquest_swepu%3E2440489256%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-a59584434625bb6ca527846cadfbe634a40422b4cc7b54b7027b8c3e3f2673db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440489256&rft_id=info:pmid/&rfr_iscdi=true |