Loading…

Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility

Macrocycles constitute superior ligands for targets that have flat binding sites but often require long synthetic routes, emphasizing the need for property prediction prior to synthesis. We have investigated the scope and limitations of machine learning classification models and of regression models...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical sciences 2021-01, Vol.110 (1), p.301-313
Main Authors: Poongavanam, Vasanthanathan, Atilaw, Yoseph, Ye, Sofie, Wieske, Lianne H.E., Erdelyi, Mate, Ermondi, Giuseppe, Caron, Giulia, Kihlberg, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3
cites cdi_FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3
container_end_page 313
container_issue 1
container_start_page 301
container_title Journal of pharmaceutical sciences
container_volume 110
creator Poongavanam, Vasanthanathan
Atilaw, Yoseph
Ye, Sofie
Wieske, Lianne H.E.
Erdelyi, Mate
Ermondi, Giuseppe
Caron, Giulia
Kihlberg, Jan
description Macrocycles constitute superior ligands for targets that have flat binding sites but often require long synthetic routes, emphasizing the need for property prediction prior to synthesis. We have investigated the scope and limitations of machine learning classification models and of regression models for predicting the cell permeability of a set of denovo-designed, drug-like macrocycles. 2D-Based classification models, which are fast to calculate, discriminated between macrocycles that had low-medium and high permeability and may be used as virtual filters in early drug discovery projects. Importantly, stereo- and regioisomer were correctly classified. QSPR studies of two small sets of comparator drugs suggested that use of 3D descriptors, calculated from biologically relevant conformations, would allow development of more precise regression models for late phase drug projects. However, a 3D permeability model could only be developed for a rigid series of macrocycles. Comparison of NMR based conformational analysis with in silico conformational sampling indicated that this shortcoming originates from the inability of the molecular mechanics force field to identify the relevant conformations for flexible macrocycles. We speculate that a Kier flexibility index of ≤10 constitutes a current upper limit for reasonably accurate 3D prediction of macrocycle cell permeability.
doi_str_mv 10.1016/j.xphs.2020.10.052
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_429769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354920306687</els_id><sourcerecordid>2456858928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3</originalsourceid><addsrcrecordid>eNp9kc1O3DAURq2qqAzQF-ii8rILMtjOzzhSN2gotNKgjlRgaznONXjkxKmdUGbHO_CGPAkOmbJkZen6fJ9070HoCyVzSmhxspk_dHdhzggbB3OSsw9oRnNGkoLQxUc0I4SxJM2zch8dhLAhhBQkzz-h_TSlrORpMUPd2kNtVG_aW9zfAV6Db0BWxpp-i53Gl1J5p7bKQsDauwYvXaudb2RvXCst_iObzo7h58cnvDKN6V9_wmvWWVCDlR6fW3gwU-kR2tPSBvi8ew_R9fmPq-XPZPX74tfydJWojHKWFFwqqVNaq0oxyOQi10VZqbrilFdKa8U5rSuAEU55XdJaA5dkIWncnWtID9Hx1Bv-QTdUovOmkX4rnDTizNycCudvxTCIjJWLooz4twnvvPs7QOhFY4ICa2ULbgiCZXnBc14yHlE2ofEyIXjQb92UiFGM2IhRjBjFjLMoJoa-7vqHqoH6LfLfRAS-TwDEo9wb8CIoA62KdjyoXtTOvNf_Avmaozk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456858928</pqid></control><display><type>article</type><title>Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility</title><source>ScienceDirect Journals</source><creator>Poongavanam, Vasanthanathan ; Atilaw, Yoseph ; Ye, Sofie ; Wieske, Lianne H.E. ; Erdelyi, Mate ; Ermondi, Giuseppe ; Caron, Giulia ; Kihlberg, Jan</creator><creatorcontrib>Poongavanam, Vasanthanathan ; Atilaw, Yoseph ; Ye, Sofie ; Wieske, Lianne H.E. ; Erdelyi, Mate ; Ermondi, Giuseppe ; Caron, Giulia ; Kihlberg, Jan</creatorcontrib><description>Macrocycles constitute superior ligands for targets that have flat binding sites but often require long synthetic routes, emphasizing the need for property prediction prior to synthesis. We have investigated the scope and limitations of machine learning classification models and of regression models for predicting the cell permeability of a set of denovo-designed, drug-like macrocycles. 2D-Based classification models, which are fast to calculate, discriminated between macrocycles that had low-medium and high permeability and may be used as virtual filters in early drug discovery projects. Importantly, stereo- and regioisomer were correctly classified. QSPR studies of two small sets of comparator drugs suggested that use of 3D descriptors, calculated from biologically relevant conformations, would allow development of more precise regression models for late phase drug projects. However, a 3D permeability model could only be developed for a rigid series of macrocycles. Comparison of NMR based conformational analysis with in silico conformational sampling indicated that this shortcoming originates from the inability of the molecular mechanics force field to identify the relevant conformations for flexible macrocycles. We speculate that a Kier flexibility index of ≤10 constitutes a current upper limit for reasonably accurate 3D prediction of macrocycle cell permeability.</description><identifier>ISSN: 0022-3549</identifier><identifier>ISSN: 1520-6017</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1016/j.xphs.2020.10.052</identifier><identifier>PMID: 33129836</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Chemistry with specialization in Organic Chemistry ; Kemi med inriktning mot organisk kemi ; Machine learning ; Macrocycle ; Membrane translocation ; Nuclear magnetic resonance (NMR) ; Nuclear magnetic resonance (NMR) spectroscopy ; Permeability ; Quantitative structure-property relationship(s) (QSPR) ; spectroscopy</subject><ispartof>Journal of pharmaceutical sciences, 2021-01, Vol.110 (1), p.301-313</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3</citedby><cites>FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022354920306687$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33129836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429769$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Poongavanam, Vasanthanathan</creatorcontrib><creatorcontrib>Atilaw, Yoseph</creatorcontrib><creatorcontrib>Ye, Sofie</creatorcontrib><creatorcontrib>Wieske, Lianne H.E.</creatorcontrib><creatorcontrib>Erdelyi, Mate</creatorcontrib><creatorcontrib>Ermondi, Giuseppe</creatorcontrib><creatorcontrib>Caron, Giulia</creatorcontrib><creatorcontrib>Kihlberg, Jan</creatorcontrib><title>Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility</title><title>Journal of pharmaceutical sciences</title><addtitle>J Pharm Sci</addtitle><description>Macrocycles constitute superior ligands for targets that have flat binding sites but often require long synthetic routes, emphasizing the need for property prediction prior to synthesis. We have investigated the scope and limitations of machine learning classification models and of regression models for predicting the cell permeability of a set of denovo-designed, drug-like macrocycles. 2D-Based classification models, which are fast to calculate, discriminated between macrocycles that had low-medium and high permeability and may be used as virtual filters in early drug discovery projects. Importantly, stereo- and regioisomer were correctly classified. QSPR studies of two small sets of comparator drugs suggested that use of 3D descriptors, calculated from biologically relevant conformations, would allow development of more precise regression models for late phase drug projects. However, a 3D permeability model could only be developed for a rigid series of macrocycles. Comparison of NMR based conformational analysis with in silico conformational sampling indicated that this shortcoming originates from the inability of the molecular mechanics force field to identify the relevant conformations for flexible macrocycles. We speculate that a Kier flexibility index of ≤10 constitutes a current upper limit for reasonably accurate 3D prediction of macrocycle cell permeability.</description><subject>Chemistry with specialization in Organic Chemistry</subject><subject>Kemi med inriktning mot organisk kemi</subject><subject>Machine learning</subject><subject>Macrocycle</subject><subject>Membrane translocation</subject><subject>Nuclear magnetic resonance (NMR)</subject><subject>Nuclear magnetic resonance (NMR) spectroscopy</subject><subject>Permeability</subject><subject>Quantitative structure-property relationship(s) (QSPR)</subject><subject>spectroscopy</subject><issn>0022-3549</issn><issn>1520-6017</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3DAURq2qqAzQF-ii8rILMtjOzzhSN2gotNKgjlRgaznONXjkxKmdUGbHO_CGPAkOmbJkZen6fJ9070HoCyVzSmhxspk_dHdhzggbB3OSsw9oRnNGkoLQxUc0I4SxJM2zch8dhLAhhBQkzz-h_TSlrORpMUPd2kNtVG_aW9zfAV6Db0BWxpp-i53Gl1J5p7bKQsDauwYvXaudb2RvXCst_iObzo7h58cnvDKN6V9_wmvWWVCDlR6fW3gwU-kR2tPSBvi8ew_R9fmPq-XPZPX74tfydJWojHKWFFwqqVNaq0oxyOQi10VZqbrilFdKa8U5rSuAEU55XdJaA5dkIWncnWtID9Hx1Bv-QTdUovOmkX4rnDTizNycCudvxTCIjJWLooz4twnvvPs7QOhFY4ICa2ULbgiCZXnBc14yHlE2ofEyIXjQb92UiFGM2IhRjBjFjLMoJoa-7vqHqoH6LfLfRAS-TwDEo9wb8CIoA62KdjyoXtTOvNf_Avmaozk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Poongavanam, Vasanthanathan</creator><creator>Atilaw, Yoseph</creator><creator>Ye, Sofie</creator><creator>Wieske, Lianne H.E.</creator><creator>Erdelyi, Mate</creator><creator>Ermondi, Giuseppe</creator><creator>Caron, Giulia</creator><creator>Kihlberg, Jan</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20210101</creationdate><title>Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility</title><author>Poongavanam, Vasanthanathan ; Atilaw, Yoseph ; Ye, Sofie ; Wieske, Lianne H.E. ; Erdelyi, Mate ; Ermondi, Giuseppe ; Caron, Giulia ; Kihlberg, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry with specialization in Organic Chemistry</topic><topic>Kemi med inriktning mot organisk kemi</topic><topic>Machine learning</topic><topic>Macrocycle</topic><topic>Membrane translocation</topic><topic>Nuclear magnetic resonance (NMR)</topic><topic>Nuclear magnetic resonance (NMR) spectroscopy</topic><topic>Permeability</topic><topic>Quantitative structure-property relationship(s) (QSPR)</topic><topic>spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poongavanam, Vasanthanathan</creatorcontrib><creatorcontrib>Atilaw, Yoseph</creatorcontrib><creatorcontrib>Ye, Sofie</creatorcontrib><creatorcontrib>Wieske, Lianne H.E.</creatorcontrib><creatorcontrib>Erdelyi, Mate</creatorcontrib><creatorcontrib>Ermondi, Giuseppe</creatorcontrib><creatorcontrib>Caron, Giulia</creatorcontrib><creatorcontrib>Kihlberg, Jan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poongavanam, Vasanthanathan</au><au>Atilaw, Yoseph</au><au>Ye, Sofie</au><au>Wieske, Lianne H.E.</au><au>Erdelyi, Mate</au><au>Ermondi, Giuseppe</au><au>Caron, Giulia</au><au>Kihlberg, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J Pharm Sci</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>110</volume><issue>1</issue><spage>301</spage><epage>313</epage><pages>301-313</pages><issn>0022-3549</issn><issn>1520-6017</issn><eissn>1520-6017</eissn><abstract>Macrocycles constitute superior ligands for targets that have flat binding sites but often require long synthetic routes, emphasizing the need for property prediction prior to synthesis. We have investigated the scope and limitations of machine learning classification models and of regression models for predicting the cell permeability of a set of denovo-designed, drug-like macrocycles. 2D-Based classification models, which are fast to calculate, discriminated between macrocycles that had low-medium and high permeability and may be used as virtual filters in early drug discovery projects. Importantly, stereo- and regioisomer were correctly classified. QSPR studies of two small sets of comparator drugs suggested that use of 3D descriptors, calculated from biologically relevant conformations, would allow development of more precise regression models for late phase drug projects. However, a 3D permeability model could only be developed for a rigid series of macrocycles. Comparison of NMR based conformational analysis with in silico conformational sampling indicated that this shortcoming originates from the inability of the molecular mechanics force field to identify the relevant conformations for flexible macrocycles. We speculate that a Kier flexibility index of ≤10 constitutes a current upper limit for reasonably accurate 3D prediction of macrocycle cell permeability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33129836</pmid><doi>10.1016/j.xphs.2020.10.052</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3549
ispartof Journal of pharmaceutical sciences, 2021-01, Vol.110 (1), p.301-313
issn 0022-3549
1520-6017
1520-6017
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_429769
source ScienceDirect Journals
subjects Chemistry with specialization in Organic Chemistry
Kemi med inriktning mot organisk kemi
Machine learning
Macrocycle
Membrane translocation
Nuclear magnetic resonance (NMR)
Nuclear magnetic resonance (NMR) spectroscopy
Permeability
Quantitative structure-property relationship(s) (QSPR)
spectroscopy
title Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Permeability%20of%20Macrocycles%20from%20Conformational%20Sampling%20%E2%80%93%20Limitations%20of%20Molecular%20Flexibility&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Poongavanam,%20Vasanthanathan&rft.date=2021-01-01&rft.volume=110&rft.issue=1&rft.spage=301&rft.epage=313&rft.pages=301-313&rft.issn=0022-3549&rft.eissn=1520-6017&rft_id=info:doi/10.1016/j.xphs.2020.10.052&rft_dat=%3Cproquest_swepu%3E2456858928%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456858928&rft_id=info:pmid/33129836&rfr_iscdi=true