Loading…
Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility
Macrocycles constitute superior ligands for targets that have flat binding sites but often require long synthetic routes, emphasizing the need for property prediction prior to synthesis. We have investigated the scope and limitations of machine learning classification models and of regression models...
Saved in:
Published in: | Journal of pharmaceutical sciences 2021-01, Vol.110 (1), p.301-313 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3 |
container_end_page | 313 |
container_issue | 1 |
container_start_page | 301 |
container_title | Journal of pharmaceutical sciences |
container_volume | 110 |
creator | Poongavanam, Vasanthanathan Atilaw, Yoseph Ye, Sofie Wieske, Lianne H.E. Erdelyi, Mate Ermondi, Giuseppe Caron, Giulia Kihlberg, Jan |
description | Macrocycles constitute superior ligands for targets that have flat binding sites but often require long synthetic routes, emphasizing the need for property prediction prior to synthesis. We have investigated the scope and limitations of machine learning classification models and of regression models for predicting the cell permeability of a set of denovo-designed, drug-like macrocycles. 2D-Based classification models, which are fast to calculate, discriminated between macrocycles that had low-medium and high permeability and may be used as virtual filters in early drug discovery projects. Importantly, stereo- and regioisomer were correctly classified. QSPR studies of two small sets of comparator drugs suggested that use of 3D descriptors, calculated from biologically relevant conformations, would allow development of more precise regression models for late phase drug projects. However, a 3D permeability model could only be developed for a rigid series of macrocycles. Comparison of NMR based conformational analysis with in silico conformational sampling indicated that this shortcoming originates from the inability of the molecular mechanics force field to identify the relevant conformations for flexible macrocycles. We speculate that a Kier flexibility index of ≤10 constitutes a current upper limit for reasonably accurate 3D prediction of macrocycle cell permeability. |
doi_str_mv | 10.1016/j.xphs.2020.10.052 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_429769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354920306687</els_id><sourcerecordid>2456858928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3</originalsourceid><addsrcrecordid>eNp9kc1O3DAURq2qqAzQF-ii8rILMtjOzzhSN2gotNKgjlRgaznONXjkxKmdUGbHO_CGPAkOmbJkZen6fJ9070HoCyVzSmhxspk_dHdhzggbB3OSsw9oRnNGkoLQxUc0I4SxJM2zch8dhLAhhBQkzz-h_TSlrORpMUPd2kNtVG_aW9zfAV6Db0BWxpp-i53Gl1J5p7bKQsDauwYvXaudb2RvXCst_iObzo7h58cnvDKN6V9_wmvWWVCDlR6fW3gwU-kR2tPSBvi8ew_R9fmPq-XPZPX74tfydJWojHKWFFwqqVNaq0oxyOQi10VZqbrilFdKa8U5rSuAEU55XdJaA5dkIWncnWtID9Hx1Bv-QTdUovOmkX4rnDTizNycCudvxTCIjJWLooz4twnvvPs7QOhFY4ICa2ULbgiCZXnBc14yHlE2ofEyIXjQb92UiFGM2IhRjBjFjLMoJoa-7vqHqoH6LfLfRAS-TwDEo9wb8CIoA62KdjyoXtTOvNf_Avmaozk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456858928</pqid></control><display><type>article</type><title>Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility</title><source>ScienceDirect Journals</source><creator>Poongavanam, Vasanthanathan ; Atilaw, Yoseph ; Ye, Sofie ; Wieske, Lianne H.E. ; Erdelyi, Mate ; Ermondi, Giuseppe ; Caron, Giulia ; Kihlberg, Jan</creator><creatorcontrib>Poongavanam, Vasanthanathan ; Atilaw, Yoseph ; Ye, Sofie ; Wieske, Lianne H.E. ; Erdelyi, Mate ; Ermondi, Giuseppe ; Caron, Giulia ; Kihlberg, Jan</creatorcontrib><description>Macrocycles constitute superior ligands for targets that have flat binding sites but often require long synthetic routes, emphasizing the need for property prediction prior to synthesis. We have investigated the scope and limitations of machine learning classification models and of regression models for predicting the cell permeability of a set of denovo-designed, drug-like macrocycles. 2D-Based classification models, which are fast to calculate, discriminated between macrocycles that had low-medium and high permeability and may be used as virtual filters in early drug discovery projects. Importantly, stereo- and regioisomer were correctly classified. QSPR studies of two small sets of comparator drugs suggested that use of 3D descriptors, calculated from biologically relevant conformations, would allow development of more precise regression models for late phase drug projects. However, a 3D permeability model could only be developed for a rigid series of macrocycles. Comparison of NMR based conformational analysis with in silico conformational sampling indicated that this shortcoming originates from the inability of the molecular mechanics force field to identify the relevant conformations for flexible macrocycles. We speculate that a Kier flexibility index of ≤10 constitutes a current upper limit for reasonably accurate 3D prediction of macrocycle cell permeability.</description><identifier>ISSN: 0022-3549</identifier><identifier>ISSN: 1520-6017</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1016/j.xphs.2020.10.052</identifier><identifier>PMID: 33129836</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Chemistry with specialization in Organic Chemistry ; Kemi med inriktning mot organisk kemi ; Machine learning ; Macrocycle ; Membrane translocation ; Nuclear magnetic resonance (NMR) ; Nuclear magnetic resonance (NMR) spectroscopy ; Permeability ; Quantitative structure-property relationship(s) (QSPR) ; spectroscopy</subject><ispartof>Journal of pharmaceutical sciences, 2021-01, Vol.110 (1), p.301-313</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3</citedby><cites>FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022354920306687$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33129836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429769$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Poongavanam, Vasanthanathan</creatorcontrib><creatorcontrib>Atilaw, Yoseph</creatorcontrib><creatorcontrib>Ye, Sofie</creatorcontrib><creatorcontrib>Wieske, Lianne H.E.</creatorcontrib><creatorcontrib>Erdelyi, Mate</creatorcontrib><creatorcontrib>Ermondi, Giuseppe</creatorcontrib><creatorcontrib>Caron, Giulia</creatorcontrib><creatorcontrib>Kihlberg, Jan</creatorcontrib><title>Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility</title><title>Journal of pharmaceutical sciences</title><addtitle>J Pharm Sci</addtitle><description>Macrocycles constitute superior ligands for targets that have flat binding sites but often require long synthetic routes, emphasizing the need for property prediction prior to synthesis. We have investigated the scope and limitations of machine learning classification models and of regression models for predicting the cell permeability of a set of denovo-designed, drug-like macrocycles. 2D-Based classification models, which are fast to calculate, discriminated between macrocycles that had low-medium and high permeability and may be used as virtual filters in early drug discovery projects. Importantly, stereo- and regioisomer were correctly classified. QSPR studies of two small sets of comparator drugs suggested that use of 3D descriptors, calculated from biologically relevant conformations, would allow development of more precise regression models for late phase drug projects. However, a 3D permeability model could only be developed for a rigid series of macrocycles. Comparison of NMR based conformational analysis with in silico conformational sampling indicated that this shortcoming originates from the inability of the molecular mechanics force field to identify the relevant conformations for flexible macrocycles. We speculate that a Kier flexibility index of ≤10 constitutes a current upper limit for reasonably accurate 3D prediction of macrocycle cell permeability.</description><subject>Chemistry with specialization in Organic Chemistry</subject><subject>Kemi med inriktning mot organisk kemi</subject><subject>Machine learning</subject><subject>Macrocycle</subject><subject>Membrane translocation</subject><subject>Nuclear magnetic resonance (NMR)</subject><subject>Nuclear magnetic resonance (NMR) spectroscopy</subject><subject>Permeability</subject><subject>Quantitative structure-property relationship(s) (QSPR)</subject><subject>spectroscopy</subject><issn>0022-3549</issn><issn>1520-6017</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3DAURq2qqAzQF-ii8rILMtjOzzhSN2gotNKgjlRgaznONXjkxKmdUGbHO_CGPAkOmbJkZen6fJ9070HoCyVzSmhxspk_dHdhzggbB3OSsw9oRnNGkoLQxUc0I4SxJM2zch8dhLAhhBQkzz-h_TSlrORpMUPd2kNtVG_aW9zfAV6Db0BWxpp-i53Gl1J5p7bKQsDauwYvXaudb2RvXCst_iObzo7h58cnvDKN6V9_wmvWWVCDlR6fW3gwU-kR2tPSBvi8ew_R9fmPq-XPZPX74tfydJWojHKWFFwqqVNaq0oxyOQi10VZqbrilFdKa8U5rSuAEU55XdJaA5dkIWncnWtID9Hx1Bv-QTdUovOmkX4rnDTizNycCudvxTCIjJWLooz4twnvvPs7QOhFY4ICa2ULbgiCZXnBc14yHlE2ofEyIXjQb92UiFGM2IhRjBjFjLMoJoa-7vqHqoH6LfLfRAS-TwDEo9wb8CIoA62KdjyoXtTOvNf_Avmaozk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Poongavanam, Vasanthanathan</creator><creator>Atilaw, Yoseph</creator><creator>Ye, Sofie</creator><creator>Wieske, Lianne H.E.</creator><creator>Erdelyi, Mate</creator><creator>Ermondi, Giuseppe</creator><creator>Caron, Giulia</creator><creator>Kihlberg, Jan</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20210101</creationdate><title>Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility</title><author>Poongavanam, Vasanthanathan ; Atilaw, Yoseph ; Ye, Sofie ; Wieske, Lianne H.E. ; Erdelyi, Mate ; Ermondi, Giuseppe ; Caron, Giulia ; Kihlberg, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry with specialization in Organic Chemistry</topic><topic>Kemi med inriktning mot organisk kemi</topic><topic>Machine learning</topic><topic>Macrocycle</topic><topic>Membrane translocation</topic><topic>Nuclear magnetic resonance (NMR)</topic><topic>Nuclear magnetic resonance (NMR) spectroscopy</topic><topic>Permeability</topic><topic>Quantitative structure-property relationship(s) (QSPR)</topic><topic>spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poongavanam, Vasanthanathan</creatorcontrib><creatorcontrib>Atilaw, Yoseph</creatorcontrib><creatorcontrib>Ye, Sofie</creatorcontrib><creatorcontrib>Wieske, Lianne H.E.</creatorcontrib><creatorcontrib>Erdelyi, Mate</creatorcontrib><creatorcontrib>Ermondi, Giuseppe</creatorcontrib><creatorcontrib>Caron, Giulia</creatorcontrib><creatorcontrib>Kihlberg, Jan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poongavanam, Vasanthanathan</au><au>Atilaw, Yoseph</au><au>Ye, Sofie</au><au>Wieske, Lianne H.E.</au><au>Erdelyi, Mate</au><au>Ermondi, Giuseppe</au><au>Caron, Giulia</au><au>Kihlberg, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J Pharm Sci</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>110</volume><issue>1</issue><spage>301</spage><epage>313</epage><pages>301-313</pages><issn>0022-3549</issn><issn>1520-6017</issn><eissn>1520-6017</eissn><abstract>Macrocycles constitute superior ligands for targets that have flat binding sites but often require long synthetic routes, emphasizing the need for property prediction prior to synthesis. We have investigated the scope and limitations of machine learning classification models and of regression models for predicting the cell permeability of a set of denovo-designed, drug-like macrocycles. 2D-Based classification models, which are fast to calculate, discriminated between macrocycles that had low-medium and high permeability and may be used as virtual filters in early drug discovery projects. Importantly, stereo- and regioisomer were correctly classified. QSPR studies of two small sets of comparator drugs suggested that use of 3D descriptors, calculated from biologically relevant conformations, would allow development of more precise regression models for late phase drug projects. However, a 3D permeability model could only be developed for a rigid series of macrocycles. Comparison of NMR based conformational analysis with in silico conformational sampling indicated that this shortcoming originates from the inability of the molecular mechanics force field to identify the relevant conformations for flexible macrocycles. We speculate that a Kier flexibility index of ≤10 constitutes a current upper limit for reasonably accurate 3D prediction of macrocycle cell permeability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33129836</pmid><doi>10.1016/j.xphs.2020.10.052</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3549 |
ispartof | Journal of pharmaceutical sciences, 2021-01, Vol.110 (1), p.301-313 |
issn | 0022-3549 1520-6017 1520-6017 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_429769 |
source | ScienceDirect Journals |
subjects | Chemistry with specialization in Organic Chemistry Kemi med inriktning mot organisk kemi Machine learning Macrocycle Membrane translocation Nuclear magnetic resonance (NMR) Nuclear magnetic resonance (NMR) spectroscopy Permeability Quantitative structure-property relationship(s) (QSPR) spectroscopy |
title | Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Permeability%20of%20Macrocycles%20from%20Conformational%20Sampling%20%E2%80%93%20Limitations%20of%20Molecular%20Flexibility&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Poongavanam,%20Vasanthanathan&rft.date=2021-01-01&rft.volume=110&rft.issue=1&rft.spage=301&rft.epage=313&rft.pages=301-313&rft.issn=0022-3549&rft.eissn=1520-6017&rft_id=info:doi/10.1016/j.xphs.2020.10.052&rft_dat=%3Cproquest_swepu%3E2456858928%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4182-68acaf31dcbc2e4a75f69bcdb818bcffc881dbee418238d91dfe8a07a16018fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456858928&rft_id=info:pmid/33129836&rfr_iscdi=true |