Loading…

Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene

Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graph...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2020-10, Vol.14 (10), p.12771-12780
Main Authors: Panda, J, Ramu, M, Karis, Olof, Sarkar, Tapati, Kamalakar, M. Venkata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73
cites cdi_FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73
container_end_page 12780
container_issue 10
container_start_page 12771
container_title ACS nano
container_volume 14
creator Panda, J
Ramu, M
Karis, Olof
Sarkar, Tapati
Kamalakar, M. Venkata
description Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graphene’s practicality for planar spintronic applications. In this work, we reveal an exceptionally long spin communication capability of 45 μm and highest to date spin diffusion length of 13.6 μm in graphene on SiO2/Si at room temperature. Employing commercial chemical vapor deposited (CVD) graphene, we show how contact-induced surface charge transfer doping and device doping contributions, as well as spin relaxation, can be quenched in extremely long spin channels and thereby enable unexpectedly long spin diffusion lengths in polycrystalline CVD graphene. Extensive experiments show enhanced spin transport and precession in multiple longest channels (36 and 45 μm) that reveal the highest spin lifetime of ∼2.5–3.5 ns in graphene over SiO2/Si, even under ambient conditions. Such performance, made possible due to our devices approaching the intrinsic spin–orbit coupling of ∼20 μeV in graphene, reveals the role of the D’yakonov–Perel’ spin relaxation mechanism in graphene channels as well as contact regions. Our record demonstration, fresh device engineering, and spin relaxation insights unlock the ultimate spin current capabilities of graphene on SiO2/Si, while the robust high performance of commercial CVD graphene can proliferate research and development of innovative spin sensors and spin computing circuits.
doi_str_mv 10.1021/acsnano.0c03376
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_430098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444377372</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73</originalsourceid><addsrcrecordid>eNp1kc1LwzAYxoMoOqdnb9KjoNOk-WovgsxPEDyow1tI03cuo21q0ir-92ZsDnfwlBfye548bx6Ejgg-JzglF9qERjfuHBtMqRRbaEByKkY4E2_b65mTPbQfwhxjLjMpdtEeTXPGBccDdPtadbbWHSTPrW2Sce89NF1IFrOra_DG6ioZz6C2Jg4T3TqfXEPrgu2gTO68bmfQwAHameoqwOHqHKKX25uX8f3o8enuYXz1ONJMiG5UZCaTMuOGCSYNNkbrKeYlN0UuYiRgojScSQJFWkhdEkEZ0XhKDM94oSUdorOlbfiCti9U62N2_62cturaTq6U8--q7xWjGOdZxC-XeGRrKE3czOtqQ7V509iZenefSvJcxJjR4GRl4N1HD6FTtQ0Gqko34PqgUsYYlZLKNKIXS9R4F4KH6foZgtWiK7XqSq26iorjv-nW_G85EThdAlGp5q73Tfzaf-1-AB7loT4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444377372</pqid></control><display><type>article</type><title>Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Panda, J ; Ramu, M ; Karis, Olof ; Sarkar, Tapati ; Kamalakar, M. Venkata</creator><creatorcontrib>Panda, J ; Ramu, M ; Karis, Olof ; Sarkar, Tapati ; Kamalakar, M. Venkata</creatorcontrib><description>Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graphene’s practicality for planar spintronic applications. In this work, we reveal an exceptionally long spin communication capability of 45 μm and highest to date spin diffusion length of 13.6 μm in graphene on SiO2/Si at room temperature. Employing commercial chemical vapor deposited (CVD) graphene, we show how contact-induced surface charge transfer doping and device doping contributions, as well as spin relaxation, can be quenched in extremely long spin channels and thereby enable unexpectedly long spin diffusion lengths in polycrystalline CVD graphene. Extensive experiments show enhanced spin transport and precession in multiple longest channels (36 and 45 μm) that reveal the highest spin lifetime of ∼2.5–3.5 ns in graphene over SiO2/Si, even under ambient conditions. Such performance, made possible due to our devices approaching the intrinsic spin–orbit coupling of ∼20 μeV in graphene, reveals the role of the D’yakonov–Perel’ spin relaxation mechanism in graphene channels as well as contact regions. Our record demonstration, fresh device engineering, and spin relaxation insights unlock the ultimate spin current capabilities of graphene on SiO2/Si, while the robust high performance of commercial CVD graphene can proliferate research and development of innovative spin sensors and spin computing circuits.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c03376</identifier><identifier>PMID: 32945650</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CVD graphene ; graphene spintronics ; spin current ; spintronics ; surface charge transfer doping</subject><ispartof>ACS nano, 2020-10, Vol.14 (10), p.12771-12780</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73</citedby><cites>FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73</cites><orcidid>0000-0003-2385-9267 ; 0000-0003-4754-2504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32945650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-430098$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Panda, J</creatorcontrib><creatorcontrib>Ramu, M</creatorcontrib><creatorcontrib>Karis, Olof</creatorcontrib><creatorcontrib>Sarkar, Tapati</creatorcontrib><creatorcontrib>Kamalakar, M. Venkata</creatorcontrib><title>Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graphene’s practicality for planar spintronic applications. In this work, we reveal an exceptionally long spin communication capability of 45 μm and highest to date spin diffusion length of 13.6 μm in graphene on SiO2/Si at room temperature. Employing commercial chemical vapor deposited (CVD) graphene, we show how contact-induced surface charge transfer doping and device doping contributions, as well as spin relaxation, can be quenched in extremely long spin channels and thereby enable unexpectedly long spin diffusion lengths in polycrystalline CVD graphene. Extensive experiments show enhanced spin transport and precession in multiple longest channels (36 and 45 μm) that reveal the highest spin lifetime of ∼2.5–3.5 ns in graphene over SiO2/Si, even under ambient conditions. Such performance, made possible due to our devices approaching the intrinsic spin–orbit coupling of ∼20 μeV in graphene, reveals the role of the D’yakonov–Perel’ spin relaxation mechanism in graphene channels as well as contact regions. Our record demonstration, fresh device engineering, and spin relaxation insights unlock the ultimate spin current capabilities of graphene on SiO2/Si, while the robust high performance of commercial CVD graphene can proliferate research and development of innovative spin sensors and spin computing circuits.</description><subject>CVD graphene</subject><subject>graphene spintronics</subject><subject>spin current</subject><subject>spintronics</subject><subject>surface charge transfer doping</subject><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1LwzAYxoMoOqdnb9KjoNOk-WovgsxPEDyow1tI03cuo21q0ir-92ZsDnfwlBfye548bx6Ejgg-JzglF9qERjfuHBtMqRRbaEByKkY4E2_b65mTPbQfwhxjLjMpdtEeTXPGBccDdPtadbbWHSTPrW2Sce89NF1IFrOra_DG6ioZz6C2Jg4T3TqfXEPrgu2gTO68bmfQwAHameoqwOHqHKKX25uX8f3o8enuYXz1ONJMiG5UZCaTMuOGCSYNNkbrKeYlN0UuYiRgojScSQJFWkhdEkEZ0XhKDM94oSUdorOlbfiCti9U62N2_62cturaTq6U8--q7xWjGOdZxC-XeGRrKE3czOtqQ7V509iZenefSvJcxJjR4GRl4N1HD6FTtQ0Gqko34PqgUsYYlZLKNKIXS9R4F4KH6foZgtWiK7XqSq26iorjv-nW_G85EThdAlGp5q73Tfzaf-1-AB7loT4</recordid><startdate>20201027</startdate><enddate>20201027</enddate><creator>Panda, J</creator><creator>Ramu, M</creator><creator>Karis, Olof</creator><creator>Sarkar, Tapati</creator><creator>Kamalakar, M. Venkata</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2385-9267</orcidid><orcidid>https://orcid.org/0000-0003-4754-2504</orcidid></search><sort><creationdate>20201027</creationdate><title>Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene</title><author>Panda, J ; Ramu, M ; Karis, Olof ; Sarkar, Tapati ; Kamalakar, M. Venkata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CVD graphene</topic><topic>graphene spintronics</topic><topic>spin current</topic><topic>spintronics</topic><topic>surface charge transfer doping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panda, J</creatorcontrib><creatorcontrib>Ramu, M</creatorcontrib><creatorcontrib>Karis, Olof</creatorcontrib><creatorcontrib>Sarkar, Tapati</creatorcontrib><creatorcontrib>Kamalakar, M. Venkata</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panda, J</au><au>Ramu, M</au><au>Karis, Olof</au><au>Sarkar, Tapati</au><au>Kamalakar, M. Venkata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-10-27</date><risdate>2020</risdate><volume>14</volume><issue>10</issue><spage>12771</spage><epage>12780</epage><pages>12771-12780</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graphene’s practicality for planar spintronic applications. In this work, we reveal an exceptionally long spin communication capability of 45 μm and highest to date spin diffusion length of 13.6 μm in graphene on SiO2/Si at room temperature. Employing commercial chemical vapor deposited (CVD) graphene, we show how contact-induced surface charge transfer doping and device doping contributions, as well as spin relaxation, can be quenched in extremely long spin channels and thereby enable unexpectedly long spin diffusion lengths in polycrystalline CVD graphene. Extensive experiments show enhanced spin transport and precession in multiple longest channels (36 and 45 μm) that reveal the highest spin lifetime of ∼2.5–3.5 ns in graphene over SiO2/Si, even under ambient conditions. Such performance, made possible due to our devices approaching the intrinsic spin–orbit coupling of ∼20 μeV in graphene, reveals the role of the D’yakonov–Perel’ spin relaxation mechanism in graphene channels as well as contact regions. Our record demonstration, fresh device engineering, and spin relaxation insights unlock the ultimate spin current capabilities of graphene on SiO2/Si, while the robust high performance of commercial CVD graphene can proliferate research and development of innovative spin sensors and spin computing circuits.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32945650</pmid><doi>10.1021/acsnano.0c03376</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2385-9267</orcidid><orcidid>https://orcid.org/0000-0003-4754-2504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-10, Vol.14 (10), p.12771-12780
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_430098
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects CVD graphene
graphene spintronics
spin current
spintronics
surface charge transfer doping
title Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultimate%20Spin%20Currents%20in%20Commercial%20Chemical%20Vapor%20Deposited%20Graphene&rft.jtitle=ACS%20nano&rft.au=Panda,%20J&rft.date=2020-10-27&rft.volume=14&rft.issue=10&rft.spage=12771&rft.epage=12780&rft.pages=12771-12780&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c03376&rft_dat=%3Cproquest_swepu%3E2444377372%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444377372&rft_id=info:pmid/32945650&rfr_iscdi=true