Loading…
Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene
Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graph...
Saved in:
Published in: | ACS nano 2020-10, Vol.14 (10), p.12771-12780 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73 |
---|---|
cites | cdi_FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73 |
container_end_page | 12780 |
container_issue | 10 |
container_start_page | 12771 |
container_title | ACS nano |
container_volume | 14 |
creator | Panda, J Ramu, M Karis, Olof Sarkar, Tapati Kamalakar, M. Venkata |
description | Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graphene’s practicality for planar spintronic applications. In this work, we reveal an exceptionally long spin communication capability of 45 μm and highest to date spin diffusion length of 13.6 μm in graphene on SiO2/Si at room temperature. Employing commercial chemical vapor deposited (CVD) graphene, we show how contact-induced surface charge transfer doping and device doping contributions, as well as spin relaxation, can be quenched in extremely long spin channels and thereby enable unexpectedly long spin diffusion lengths in polycrystalline CVD graphene. Extensive experiments show enhanced spin transport and precession in multiple longest channels (36 and 45 μm) that reveal the highest spin lifetime of ∼2.5–3.5 ns in graphene over SiO2/Si, even under ambient conditions. Such performance, made possible due to our devices approaching the intrinsic spin–orbit coupling of ∼20 μeV in graphene, reveals the role of the D’yakonov–Perel’ spin relaxation mechanism in graphene channels as well as contact regions. Our record demonstration, fresh device engineering, and spin relaxation insights unlock the ultimate spin current capabilities of graphene on SiO2/Si, while the robust high performance of commercial CVD graphene can proliferate research and development of innovative spin sensors and spin computing circuits. |
doi_str_mv | 10.1021/acsnano.0c03376 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_430098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444377372</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73</originalsourceid><addsrcrecordid>eNp1kc1LwzAYxoMoOqdnb9KjoNOk-WovgsxPEDyow1tI03cuo21q0ir-92ZsDnfwlBfye548bx6Ejgg-JzglF9qERjfuHBtMqRRbaEByKkY4E2_b65mTPbQfwhxjLjMpdtEeTXPGBccDdPtadbbWHSTPrW2Sce89NF1IFrOra_DG6ioZz6C2Jg4T3TqfXEPrgu2gTO68bmfQwAHameoqwOHqHKKX25uX8f3o8enuYXz1ONJMiG5UZCaTMuOGCSYNNkbrKeYlN0UuYiRgojScSQJFWkhdEkEZ0XhKDM94oSUdorOlbfiCti9U62N2_62cturaTq6U8--q7xWjGOdZxC-XeGRrKE3czOtqQ7V509iZenefSvJcxJjR4GRl4N1HD6FTtQ0Gqko34PqgUsYYlZLKNKIXS9R4F4KH6foZgtWiK7XqSq26iorjv-nW_G85EThdAlGp5q73Tfzaf-1-AB7loT4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444377372</pqid></control><display><type>article</type><title>Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Panda, J ; Ramu, M ; Karis, Olof ; Sarkar, Tapati ; Kamalakar, M. Venkata</creator><creatorcontrib>Panda, J ; Ramu, M ; Karis, Olof ; Sarkar, Tapati ; Kamalakar, M. Venkata</creatorcontrib><description>Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graphene’s practicality for planar spintronic applications. In this work, we reveal an exceptionally long spin communication capability of 45 μm and highest to date spin diffusion length of 13.6 μm in graphene on SiO2/Si at room temperature. Employing commercial chemical vapor deposited (CVD) graphene, we show how contact-induced surface charge transfer doping and device doping contributions, as well as spin relaxation, can be quenched in extremely long spin channels and thereby enable unexpectedly long spin diffusion lengths in polycrystalline CVD graphene. Extensive experiments show enhanced spin transport and precession in multiple longest channels (36 and 45 μm) that reveal the highest spin lifetime of ∼2.5–3.5 ns in graphene over SiO2/Si, even under ambient conditions. Such performance, made possible due to our devices approaching the intrinsic spin–orbit coupling of ∼20 μeV in graphene, reveals the role of the D’yakonov–Perel’ spin relaxation mechanism in graphene channels as well as contact regions. Our record demonstration, fresh device engineering, and spin relaxation insights unlock the ultimate spin current capabilities of graphene on SiO2/Si, while the robust high performance of commercial CVD graphene can proliferate research and development of innovative spin sensors and spin computing circuits.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c03376</identifier><identifier>PMID: 32945650</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CVD graphene ; graphene spintronics ; spin current ; spintronics ; surface charge transfer doping</subject><ispartof>ACS nano, 2020-10, Vol.14 (10), p.12771-12780</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73</citedby><cites>FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73</cites><orcidid>0000-0003-2385-9267 ; 0000-0003-4754-2504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32945650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-430098$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Panda, J</creatorcontrib><creatorcontrib>Ramu, M</creatorcontrib><creatorcontrib>Karis, Olof</creatorcontrib><creatorcontrib>Sarkar, Tapati</creatorcontrib><creatorcontrib>Kamalakar, M. Venkata</creatorcontrib><title>Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graphene’s practicality for planar spintronic applications. In this work, we reveal an exceptionally long spin communication capability of 45 μm and highest to date spin diffusion length of 13.6 μm in graphene on SiO2/Si at room temperature. Employing commercial chemical vapor deposited (CVD) graphene, we show how contact-induced surface charge transfer doping and device doping contributions, as well as spin relaxation, can be quenched in extremely long spin channels and thereby enable unexpectedly long spin diffusion lengths in polycrystalline CVD graphene. Extensive experiments show enhanced spin transport and precession in multiple longest channels (36 and 45 μm) that reveal the highest spin lifetime of ∼2.5–3.5 ns in graphene over SiO2/Si, even under ambient conditions. Such performance, made possible due to our devices approaching the intrinsic spin–orbit coupling of ∼20 μeV in graphene, reveals the role of the D’yakonov–Perel’ spin relaxation mechanism in graphene channels as well as contact regions. Our record demonstration, fresh device engineering, and spin relaxation insights unlock the ultimate spin current capabilities of graphene on SiO2/Si, while the robust high performance of commercial CVD graphene can proliferate research and development of innovative spin sensors and spin computing circuits.</description><subject>CVD graphene</subject><subject>graphene spintronics</subject><subject>spin current</subject><subject>spintronics</subject><subject>surface charge transfer doping</subject><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1LwzAYxoMoOqdnb9KjoNOk-WovgsxPEDyow1tI03cuo21q0ir-92ZsDnfwlBfye548bx6Ejgg-JzglF9qERjfuHBtMqRRbaEByKkY4E2_b65mTPbQfwhxjLjMpdtEeTXPGBccDdPtadbbWHSTPrW2Sce89NF1IFrOra_DG6ioZz6C2Jg4T3TqfXEPrgu2gTO68bmfQwAHameoqwOHqHKKX25uX8f3o8enuYXz1ONJMiG5UZCaTMuOGCSYNNkbrKeYlN0UuYiRgojScSQJFWkhdEkEZ0XhKDM94oSUdorOlbfiCti9U62N2_62cturaTq6U8--q7xWjGOdZxC-XeGRrKE3czOtqQ7V509iZenefSvJcxJjR4GRl4N1HD6FTtQ0Gqko34PqgUsYYlZLKNKIXS9R4F4KH6foZgtWiK7XqSq26iorjv-nW_G85EThdAlGp5q73Tfzaf-1-AB7loT4</recordid><startdate>20201027</startdate><enddate>20201027</enddate><creator>Panda, J</creator><creator>Ramu, M</creator><creator>Karis, Olof</creator><creator>Sarkar, Tapati</creator><creator>Kamalakar, M. Venkata</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2385-9267</orcidid><orcidid>https://orcid.org/0000-0003-4754-2504</orcidid></search><sort><creationdate>20201027</creationdate><title>Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene</title><author>Panda, J ; Ramu, M ; Karis, Olof ; Sarkar, Tapati ; Kamalakar, M. Venkata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CVD graphene</topic><topic>graphene spintronics</topic><topic>spin current</topic><topic>spintronics</topic><topic>surface charge transfer doping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panda, J</creatorcontrib><creatorcontrib>Ramu, M</creatorcontrib><creatorcontrib>Karis, Olof</creatorcontrib><creatorcontrib>Sarkar, Tapati</creatorcontrib><creatorcontrib>Kamalakar, M. Venkata</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panda, J</au><au>Ramu, M</au><au>Karis, Olof</au><au>Sarkar, Tapati</au><au>Kamalakar, M. Venkata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-10-27</date><risdate>2020</risdate><volume>14</volume><issue>10</issue><spage>12771</spage><epage>12780</epage><pages>12771-12780</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graphene’s practicality for planar spintronic applications. In this work, we reveal an exceptionally long spin communication capability of 45 μm and highest to date spin diffusion length of 13.6 μm in graphene on SiO2/Si at room temperature. Employing commercial chemical vapor deposited (CVD) graphene, we show how contact-induced surface charge transfer doping and device doping contributions, as well as spin relaxation, can be quenched in extremely long spin channels and thereby enable unexpectedly long spin diffusion lengths in polycrystalline CVD graphene. Extensive experiments show enhanced spin transport and precession in multiple longest channels (36 and 45 μm) that reveal the highest spin lifetime of ∼2.5–3.5 ns in graphene over SiO2/Si, even under ambient conditions. Such performance, made possible due to our devices approaching the intrinsic spin–orbit coupling of ∼20 μeV in graphene, reveals the role of the D’yakonov–Perel’ spin relaxation mechanism in graphene channels as well as contact regions. Our record demonstration, fresh device engineering, and spin relaxation insights unlock the ultimate spin current capabilities of graphene on SiO2/Si, while the robust high performance of commercial CVD graphene can proliferate research and development of innovative spin sensors and spin computing circuits.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32945650</pmid><doi>10.1021/acsnano.0c03376</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2385-9267</orcidid><orcidid>https://orcid.org/0000-0003-4754-2504</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-10, Vol.14 (10), p.12771-12780 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_430098 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | CVD graphene graphene spintronics spin current spintronics surface charge transfer doping |
title | Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultimate%20Spin%20Currents%20in%20Commercial%20Chemical%20Vapor%20Deposited%20Graphene&rft.jtitle=ACS%20nano&rft.au=Panda,%20J&rft.date=2020-10-27&rft.volume=14&rft.issue=10&rft.spage=12771&rft.epage=12780&rft.pages=12771-12780&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c03376&rft_dat=%3Cproquest_swepu%3E2444377372%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a466t-b8c87785c4647c0ccaaf05d5cb96294e46dc5471eb2b7ad16341a0f1c585ba73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444377372&rft_id=info:pmid/32945650&rfr_iscdi=true |