Loading…
Kerr-spacetime geometric optics for vortex beams
We consider the analogy between gravitational fields and optical media within the framework of geometrical optics in curved spacetime in order to describe how light can acquire orbital angular momentum (OAM) when it traverses the gravitational field of a massive rotating compact object; in particula...
Saved in:
Published in: | Physical review. A 2021-07, Vol.104 (1), Article 013718 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the analogy between gravitational fields and optical media within the framework of geometrical optics in curved spacetime in order to describe how light can acquire orbital angular momentum (OAM) when it traverses the gravitational field of a massive rotating compact object; in particular, we analyze the interplay between OAM and polarization. Kerr spacetimes are known not only to impose a gravitational Faraday rotation on the polarization of a light beam, but also to set a characteristic fingerprint in the orbital angular momentum distribution of the radiation passing nearby a rotating black hole (BH). Kerr spacetime behaves like an inhomogeneous and anisotropic medium, in which light can acquire orbital angular momentum and spin-to-orbital angular momentum conversion can occur, acting as a polarization and phase changing medium for the gravitationally lensed light, as confirmed by the data analysis of the M87* black hole. |
---|---|
ISSN: | 2469-9926 2469-9934 2469-9934 |
DOI: | 10.1103/PhysRevA.104.013718 |