Loading…

A missense mutation converts the Na+,K+-ATPase into an ion channel and causes therapy-resistant epilepsy

The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2021-12, Vol.297 (6), p.101355-101355, Article 101355
Main Authors: Ygberg, Sofia, Akkuratov, Evgeny E., Howard, Rebecca J., Taylan, Fulya, Jans, Daniel C., Mahato, Dhani R., Katz, Adriana, Kinoshita, Paula F., Portal, Benjamin, Nennesmo, Inger, Lindskog, Maria, Karlish, Steven J.D., Andersson, Magnus, Lindstrand, Anna, Brismar, Hjalmar, Aperia, Anita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c639t-a24f231b2e903153f413c4850ef1a3f54fc93297f94844443d975c4906c44de83
cites cdi_FETCH-LOGICAL-c639t-a24f231b2e903153f413c4850ef1a3f54fc93297f94844443d975c4906c44de83
container_end_page 101355
container_issue 6
container_start_page 101355
container_title The Journal of biological chemistry
container_volume 297
creator Ygberg, Sofia
Akkuratov, Evgeny E.
Howard, Rebecca J.
Taylan, Fulya
Jans, Daniel C.
Mahato, Dhani R.
Katz, Adriana
Kinoshita, Paula F.
Portal, Benjamin
Nennesmo, Inger
Lindskog, Maria
Karlish, Steven J.D.
Andersson, Magnus
Lindstrand, Anna
Brismar, Hjalmar
Aperia, Anita
description The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.
doi_str_mv 10.1016/j.jbc.2021.101355
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_460663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821011613</els_id><sourcerecordid>2591213500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639t-a24f231b2e903153f413c4850ef1a3f54fc93297f94844443d975c4906c44de83</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhB3BBOSK1Wez4I7GQKq1K-RAVcCiIm-V1Jo2XxAm2s2j_fb1NqegF7Vys0TzvO5bmReglwUuCiXizWW7WZlnggux7yvkjtCC4ojnl5OdjtMBpksuCV0foWQgbnIpJ8hQdUVaSUnK5QO0q620I4AJk_RR1tIPLzOC24GPIYgvZF31y-vkkX11904mxLg6Zdtkt1mrnoEttnRk9BbgVeD3ucg_BhqhdzGC0HYxh9xw9aXQX4MXde4y-v7-4Ov-YX3798Ol8dZkbQWXMdcGagpJ1ARJTwmnDCDWs4hgaomnDWWMkLWTZSFaxVLSWJTdMYmEYq6Gix-h09g1_YJzWavS2136nBm3VO_tjpQZ_raZJMYGFoAnPD8D7SRGJCZaH2YdJFZhIJg6z_xVbRXElBE782cwnuIfagItedw9kDyfOtup62KpK0FKwMhm8vjPww-8JQlTpvAa6TjsYpqAKLkmRooL3u8iMGj-E4KG5X0Ow2udLbVTKl9rnS835SppX__7vXvE3UAl4OwOQbry14FUwFpyB2nowUdWD_Y_9Da__4SA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591213500</pqid></control><display><type>article</type><title>A missense mutation converts the Na+,K+-ATPase into an ion channel and causes therapy-resistant epilepsy</title><source>ScienceDirect (Online service)</source><source>PubMed Central</source><creator>Ygberg, Sofia ; Akkuratov, Evgeny E. ; Howard, Rebecca J. ; Taylan, Fulya ; Jans, Daniel C. ; Mahato, Dhani R. ; Katz, Adriana ; Kinoshita, Paula F. ; Portal, Benjamin ; Nennesmo, Inger ; Lindskog, Maria ; Karlish, Steven J.D. ; Andersson, Magnus ; Lindstrand, Anna ; Brismar, Hjalmar ; Aperia, Anita</creator><creatorcontrib>Ygberg, Sofia ; Akkuratov, Evgeny E. ; Howard, Rebecca J. ; Taylan, Fulya ; Jans, Daniel C. ; Mahato, Dhani R. ; Katz, Adriana ; Kinoshita, Paula F. ; Portal, Benjamin ; Nennesmo, Inger ; Lindskog, Maria ; Karlish, Steven J.D. ; Andersson, Magnus ; Lindstrand, Anna ; Brismar, Hjalmar ; Aperia, Anita</creatorcontrib><description>The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2021.101355</identifier><identifier>PMID: 34717959</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Anticonvulsants - pharmacology ; arginine mutation ; Brain - drug effects ; Brain - metabolism ; Brain - pathology ; Cells, Cultured ; de novo mutation ; Drug Resistance ; epilepsy ; Epilepsy - drug therapy ; Epilepsy - genetics ; Epilepsy - pathology ; Humans ; Infant ; K-ATPase ; leak channel ; Molecular Dynamics Simulation ; Mutation, Missense - drug effects ; Na,K-ATPase ; Protein Subunits - analysis ; Protein Subunits - genetics ; Sodium-Potassium-Exchanging ATPase - analysis ; Sodium-Potassium-Exchanging ATPase - genetics ; Xenopus</subject><ispartof>The Journal of biological chemistry, 2021-12, Vol.297 (6), p.101355-101355, Article 101355</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c639t-a24f231b2e903153f413c4850ef1a3f54fc93297f94844443d975c4906c44de83</citedby><cites>FETCH-LOGICAL-c639t-a24f231b2e903153f413c4850ef1a3f54fc93297f94844443d975c4906c44de83</cites><orcidid>0000-0002-9101-2052 ; 0000-0002-3854-2716 ; 0000-0002-3364-6647 ; 0000-0002-5648-4169 ; 0000-0003-0578-4003 ; 0000-0003-0806-5602 ; 0000-0003-2049-3378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637647/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925821011613$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34717959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-308660$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-201946$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-190109$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-460663$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ygberg, Sofia</creatorcontrib><creatorcontrib>Akkuratov, Evgeny E.</creatorcontrib><creatorcontrib>Howard, Rebecca J.</creatorcontrib><creatorcontrib>Taylan, Fulya</creatorcontrib><creatorcontrib>Jans, Daniel C.</creatorcontrib><creatorcontrib>Mahato, Dhani R.</creatorcontrib><creatorcontrib>Katz, Adriana</creatorcontrib><creatorcontrib>Kinoshita, Paula F.</creatorcontrib><creatorcontrib>Portal, Benjamin</creatorcontrib><creatorcontrib>Nennesmo, Inger</creatorcontrib><creatorcontrib>Lindskog, Maria</creatorcontrib><creatorcontrib>Karlish, Steven J.D.</creatorcontrib><creatorcontrib>Andersson, Magnus</creatorcontrib><creatorcontrib>Lindstrand, Anna</creatorcontrib><creatorcontrib>Brismar, Hjalmar</creatorcontrib><creatorcontrib>Aperia, Anita</creatorcontrib><title>A missense mutation converts the Na+,K+-ATPase into an ion channel and causes therapy-resistant epilepsy</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.</description><subject>Animals</subject><subject>Anticonvulsants - pharmacology</subject><subject>arginine mutation</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cells, Cultured</subject><subject>de novo mutation</subject><subject>Drug Resistance</subject><subject>epilepsy</subject><subject>Epilepsy - drug therapy</subject><subject>Epilepsy - genetics</subject><subject>Epilepsy - pathology</subject><subject>Humans</subject><subject>Infant</subject><subject>K-ATPase</subject><subject>leak channel</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation, Missense - drug effects</subject><subject>Na,K-ATPase</subject><subject>Protein Subunits - analysis</subject><subject>Protein Subunits - genetics</subject><subject>Sodium-Potassium-Exchanging ATPase - analysis</subject><subject>Sodium-Potassium-Exchanging ATPase - genetics</subject><subject>Xenopus</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi0EokvhB3BBOSK1Wez4I7GQKq1K-RAVcCiIm-V1Jo2XxAm2s2j_fb1NqegF7Vys0TzvO5bmReglwUuCiXizWW7WZlnggux7yvkjtCC4ojnl5OdjtMBpksuCV0foWQgbnIpJ8hQdUVaSUnK5QO0q620I4AJk_RR1tIPLzOC24GPIYgvZF31y-vkkX11904mxLg6Zdtkt1mrnoEttnRk9BbgVeD3ucg_BhqhdzGC0HYxh9xw9aXQX4MXde4y-v7-4Ov-YX3798Ol8dZkbQWXMdcGagpJ1ARJTwmnDCDWs4hgaomnDWWMkLWTZSFaxVLSWJTdMYmEYq6Gix-h09g1_YJzWavS2136nBm3VO_tjpQZ_raZJMYGFoAnPD8D7SRGJCZaH2YdJFZhIJg6z_xVbRXElBE782cwnuIfagItedw9kDyfOtup62KpK0FKwMhm8vjPww-8JQlTpvAa6TjsYpqAKLkmRooL3u8iMGj-E4KG5X0Ow2udLbVTKl9rnS835SppX__7vXvE3UAl4OwOQbry14FUwFpyB2nowUdWD_Y_9Da__4SA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ygberg, Sofia</creator><creator>Akkuratov, Evgeny E.</creator><creator>Howard, Rebecca J.</creator><creator>Taylan, Fulya</creator><creator>Jans, Daniel C.</creator><creator>Mahato, Dhani R.</creator><creator>Katz, Adriana</creator><creator>Kinoshita, Paula F.</creator><creator>Portal, Benjamin</creator><creator>Nennesmo, Inger</creator><creator>Lindskog, Maria</creator><creator>Karlish, Steven J.D.</creator><creator>Andersson, Magnus</creator><creator>Lindstrand, Anna</creator><creator>Brismar, Hjalmar</creator><creator>Aperia, Anita</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>ABAVF</scope><scope>DG7</scope><scope>ADHXS</scope><scope>D93</scope><scope>ACNBI</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-9101-2052</orcidid><orcidid>https://orcid.org/0000-0002-3854-2716</orcidid><orcidid>https://orcid.org/0000-0002-3364-6647</orcidid><orcidid>https://orcid.org/0000-0002-5648-4169</orcidid><orcidid>https://orcid.org/0000-0003-0578-4003</orcidid><orcidid>https://orcid.org/0000-0003-0806-5602</orcidid><orcidid>https://orcid.org/0000-0003-2049-3378</orcidid></search><sort><creationdate>20211201</creationdate><title>A missense mutation converts the Na+,K+-ATPase into an ion channel and causes therapy-resistant epilepsy</title><author>Ygberg, Sofia ; Akkuratov, Evgeny E. ; Howard, Rebecca J. ; Taylan, Fulya ; Jans, Daniel C. ; Mahato, Dhani R. ; Katz, Adriana ; Kinoshita, Paula F. ; Portal, Benjamin ; Nennesmo, Inger ; Lindskog, Maria ; Karlish, Steven J.D. ; Andersson, Magnus ; Lindstrand, Anna ; Brismar, Hjalmar ; Aperia, Anita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639t-a24f231b2e903153f413c4850ef1a3f54fc93297f94844443d975c4906c44de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anticonvulsants - pharmacology</topic><topic>arginine mutation</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cells, Cultured</topic><topic>de novo mutation</topic><topic>Drug Resistance</topic><topic>epilepsy</topic><topic>Epilepsy - drug therapy</topic><topic>Epilepsy - genetics</topic><topic>Epilepsy - pathology</topic><topic>Humans</topic><topic>Infant</topic><topic>K-ATPase</topic><topic>leak channel</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation, Missense - drug effects</topic><topic>Na,K-ATPase</topic><topic>Protein Subunits - analysis</topic><topic>Protein Subunits - genetics</topic><topic>Sodium-Potassium-Exchanging ATPase - analysis</topic><topic>Sodium-Potassium-Exchanging ATPase - genetics</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ygberg, Sofia</creatorcontrib><creatorcontrib>Akkuratov, Evgeny E.</creatorcontrib><creatorcontrib>Howard, Rebecca J.</creatorcontrib><creatorcontrib>Taylan, Fulya</creatorcontrib><creatorcontrib>Jans, Daniel C.</creatorcontrib><creatorcontrib>Mahato, Dhani R.</creatorcontrib><creatorcontrib>Katz, Adriana</creatorcontrib><creatorcontrib>Kinoshita, Paula F.</creatorcontrib><creatorcontrib>Portal, Benjamin</creatorcontrib><creatorcontrib>Nennesmo, Inger</creatorcontrib><creatorcontrib>Lindskog, Maria</creatorcontrib><creatorcontrib>Karlish, Steven J.D.</creatorcontrib><creatorcontrib>Andersson, Magnus</creatorcontrib><creatorcontrib>Lindstrand, Anna</creatorcontrib><creatorcontrib>Brismar, Hjalmar</creatorcontrib><creatorcontrib>Aperia, Anita</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SWEPUB Stockholms universitet</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SWEPUB Umeå universitet</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ygberg, Sofia</au><au>Akkuratov, Evgeny E.</au><au>Howard, Rebecca J.</au><au>Taylan, Fulya</au><au>Jans, Daniel C.</au><au>Mahato, Dhani R.</au><au>Katz, Adriana</au><au>Kinoshita, Paula F.</au><au>Portal, Benjamin</au><au>Nennesmo, Inger</au><au>Lindskog, Maria</au><au>Karlish, Steven J.D.</au><au>Andersson, Magnus</au><au>Lindstrand, Anna</au><au>Brismar, Hjalmar</au><au>Aperia, Anita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A missense mutation converts the Na+,K+-ATPase into an ion channel and causes therapy-resistant epilepsy</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>297</volume><issue>6</issue><spage>101355</spage><epage>101355</epage><pages>101355-101355</pages><artnum>101355</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34717959</pmid><doi>10.1016/j.jbc.2021.101355</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9101-2052</orcidid><orcidid>https://orcid.org/0000-0002-3854-2716</orcidid><orcidid>https://orcid.org/0000-0002-3364-6647</orcidid><orcidid>https://orcid.org/0000-0002-5648-4169</orcidid><orcidid>https://orcid.org/0000-0003-0578-4003</orcidid><orcidid>https://orcid.org/0000-0003-0806-5602</orcidid><orcidid>https://orcid.org/0000-0003-2049-3378</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2021-12, Vol.297 (6), p.101355-101355, Article 101355
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_460663
source ScienceDirect (Online service); PubMed Central
subjects Animals
Anticonvulsants - pharmacology
arginine mutation
Brain - drug effects
Brain - metabolism
Brain - pathology
Cells, Cultured
de novo mutation
Drug Resistance
epilepsy
Epilepsy - drug therapy
Epilepsy - genetics
Epilepsy - pathology
Humans
Infant
K-ATPase
leak channel
Molecular Dynamics Simulation
Mutation, Missense - drug effects
Na,K-ATPase
Protein Subunits - analysis
Protein Subunits - genetics
Sodium-Potassium-Exchanging ATPase - analysis
Sodium-Potassium-Exchanging ATPase - genetics
Xenopus
title A missense mutation converts the Na+,K+-ATPase into an ion channel and causes therapy-resistant epilepsy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20missense%20mutation%20converts%20the%20Na+,K+-ATPase%20into%20an%20ion%20channel%20and%20causes%20therapy-resistant%20epilepsy&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ygberg,%20Sofia&rft.date=2021-12-01&rft.volume=297&rft.issue=6&rft.spage=101355&rft.epage=101355&rft.pages=101355-101355&rft.artnum=101355&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2021.101355&rft_dat=%3Cproquest_swepu%3E2591213500%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c639t-a24f231b2e903153f413c4850ef1a3f54fc93297f94844443d975c4906c44de83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2591213500&rft_id=info:pmid/34717959&rfr_iscdi=true