Loading…
Reliable In Silico Ranking of Engineered Therapeutic TCR Binding Affinities with MMPB/GBSA
Accurate and efficient in silico ranking of protein–protein binding affinities is useful for protein design with applications in biological therapeutics. One popular approach to rank binding affinities is to apply the molecular mechanics Poisson–Boltzmann/generalized Born surface area (MMPB/GBSA) me...
Saved in:
Published in: | Journal of chemical information and modeling 2022-02, Vol.62 (3), p.577-590 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a498t-6a6bace5fcde86b69d474cb923a981f83d2df7d67e6f7a4137facef4ee3bef6a3 |
---|---|
cites | cdi_FETCH-LOGICAL-a498t-6a6bace5fcde86b69d474cb923a981f83d2df7d67e6f7a4137facef4ee3bef6a3 |
container_end_page | 590 |
container_issue | 3 |
container_start_page | 577 |
container_title | Journal of chemical information and modeling |
container_volume | 62 |
creator | Crean, Rory M. Pudney, Christopher R. Cole, David K. van der Kamp, Marc W. |
description | Accurate and efficient in silico ranking of protein–protein binding affinities is useful for protein design with applications in biological therapeutics. One popular approach to rank binding affinities is to apply the molecular mechanics Poisson–Boltzmann/generalized Born surface area (MMPB/GBSA) method to molecular dynamics (MD) trajectories. Here, we identify protocols that enable the reliable evaluation of T-cell receptor (TCR) variants binding to their target, peptide-human leukocyte antigens (pHLAs). We suggest different protocols for variant sets with a few (≤4) or many mutations, with entropy corrections important for the latter. We demonstrate how potential outliers could be identified in advance and that just 5–10 replicas of short (4 ns) MD simulations may be sufficient for the reproducible and accurate ranking of TCR variants. The protocols developed here can be applied toward in silico screening during the optimization of therapeutic TCRs, potentially reducing both the cost and time taken for biologic development. |
doi_str_mv | 10.1021/acs.jcim.1c00765 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_470562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621660740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a498t-6a6bace5fcde86b69d474cb923a981f83d2df7d67e6f7a4137facef4ee3bef6a3</originalsourceid><addsrcrecordid>eNp1kc9v0zAYhiPExH7AnROyxIUD7ezYseMLUlvGNmkTqCsIcbEc53PrkjrFTjbx389d28GQONmSn_e1_T1Z9prgIcE5OdUmDpfGrYbEYCx48Sw7IgWTA8nx9-f7fSH5YXYc4xJjSiXPX2SHtMBMUpIfZT-m0DhdNYAuPbpxjTMtmmr_0_k5ai0683PnAQLUaLaAoNfQd86g2WSKxs7XG2pkrfOucxDRnesW6Pr6y_j0fHwzepkdWN1EeLVbT7Kvn85mk4vB1efzy8noaqCZLLsB17zSBgpraih5xWXNBDOVzKmWJbElrfPaipoL4FZoRqiwCbcMgFZguaYn2fttb7yDdV-pdXArHX6rVjv10X0bqTbMVd8rJnDB84R_2OKJXUFtwHdBN09ST0-8W6h5e6skloIUNBW82xWE9lcPsVMrFw00jfbQ9lHlPCecY8FwQt_-gy7bPvg0jURRLBktSp4ovKVMaGMMYB8fQ7DaeFbJs9p4VjvPKfLm7088BvZi_wzlIbq_9L999yqatS0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630943586</pqid></control><display><type>article</type><title>Reliable In Silico Ranking of Engineered Therapeutic TCR Binding Affinities with MMPB/GBSA</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Crean, Rory M. ; Pudney, Christopher R. ; Cole, David K. ; van der Kamp, Marc W.</creator><creatorcontrib>Crean, Rory M. ; Pudney, Christopher R. ; Cole, David K. ; van der Kamp, Marc W.</creatorcontrib><description>Accurate and efficient in silico ranking of protein–protein binding affinities is useful for protein design with applications in biological therapeutics. One popular approach to rank binding affinities is to apply the molecular mechanics Poisson–Boltzmann/generalized Born surface area (MMPB/GBSA) method to molecular dynamics (MD) trajectories. Here, we identify protocols that enable the reliable evaluation of T-cell receptor (TCR) variants binding to their target, peptide-human leukocyte antigens (pHLAs). We suggest different protocols for variant sets with a few (≤4) or many mutations, with entropy corrections important for the latter. We demonstrate how potential outliers could be identified in advance and that just 5–10 replicas of short (4 ns) MD simulations may be sufficient for the reproducible and accurate ranking of TCR variants. The protocols developed here can be applied toward in silico screening during the optimization of therapeutic TCRs, potentially reducing both the cost and time taken for biologic development.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.1c00765</identifier><identifier>PMID: 35049312</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity ; Antigens ; Binding ; Computational Biochemistry ; Entropy ; Humans ; Leukocytes ; Ligands ; Molecular dynamics ; Molecular Dynamics Simulation ; Mutation ; Optimization ; Protein Binding ; Proteins ; Proteins - chemistry ; Ranking</subject><ispartof>Journal of chemical information and modeling, 2022-02, Vol.62 (3), p.577-590</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 14, 2022</rights><rights>2022 American Chemical Society 2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a498t-6a6bace5fcde86b69d474cb923a981f83d2df7d67e6f7a4137facef4ee3bef6a3</citedby><cites>FETCH-LOGICAL-a498t-6a6bace5fcde86b69d474cb923a981f83d2df7d67e6f7a4137facef4ee3bef6a3</cites><orcidid>0000-0002-8060-3359 ; 0000-0001-6211-0086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35049312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-470562$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Crean, Rory M.</creatorcontrib><creatorcontrib>Pudney, Christopher R.</creatorcontrib><creatorcontrib>Cole, David K.</creatorcontrib><creatorcontrib>van der Kamp, Marc W.</creatorcontrib><title>Reliable In Silico Ranking of Engineered Therapeutic TCR Binding Affinities with MMPB/GBSA</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Accurate and efficient in silico ranking of protein–protein binding affinities is useful for protein design with applications in biological therapeutics. One popular approach to rank binding affinities is to apply the molecular mechanics Poisson–Boltzmann/generalized Born surface area (MMPB/GBSA) method to molecular dynamics (MD) trajectories. Here, we identify protocols that enable the reliable evaluation of T-cell receptor (TCR) variants binding to their target, peptide-human leukocyte antigens (pHLAs). We suggest different protocols for variant sets with a few (≤4) or many mutations, with entropy corrections important for the latter. We demonstrate how potential outliers could be identified in advance and that just 5–10 replicas of short (4 ns) MD simulations may be sufficient for the reproducible and accurate ranking of TCR variants. The protocols developed here can be applied toward in silico screening during the optimization of therapeutic TCRs, potentially reducing both the cost and time taken for biologic development.</description><subject>Affinity</subject><subject>Antigens</subject><subject>Binding</subject><subject>Computational Biochemistry</subject><subject>Entropy</subject><subject>Humans</subject><subject>Leukocytes</subject><subject>Ligands</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Ranking</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9v0zAYhiPExH7AnROyxIUD7ezYseMLUlvGNmkTqCsIcbEc53PrkjrFTjbx389d28GQONmSn_e1_T1Z9prgIcE5OdUmDpfGrYbEYCx48Sw7IgWTA8nx9-f7fSH5YXYc4xJjSiXPX2SHtMBMUpIfZT-m0DhdNYAuPbpxjTMtmmr_0_k5ai0683PnAQLUaLaAoNfQd86g2WSKxs7XG2pkrfOucxDRnesW6Pr6y_j0fHwzepkdWN1EeLVbT7Kvn85mk4vB1efzy8noaqCZLLsB17zSBgpraih5xWXNBDOVzKmWJbElrfPaipoL4FZoRqiwCbcMgFZguaYn2fttb7yDdV-pdXArHX6rVjv10X0bqTbMVd8rJnDB84R_2OKJXUFtwHdBN09ST0-8W6h5e6skloIUNBW82xWE9lcPsVMrFw00jfbQ9lHlPCecY8FwQt_-gy7bPvg0jURRLBktSp4ovKVMaGMMYB8fQ7DaeFbJs9p4VjvPKfLm7088BvZi_wzlIbq_9L999yqatS0</recordid><startdate>20220214</startdate><enddate>20220214</enddate><creator>Crean, Rory M.</creator><creator>Pudney, Christopher R.</creator><creator>Cole, David K.</creator><creator>van der Kamp, Marc W.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-8060-3359</orcidid><orcidid>https://orcid.org/0000-0001-6211-0086</orcidid></search><sort><creationdate>20220214</creationdate><title>Reliable In Silico Ranking of Engineered Therapeutic TCR Binding Affinities with MMPB/GBSA</title><author>Crean, Rory M. ; Pudney, Christopher R. ; Cole, David K. ; van der Kamp, Marc W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a498t-6a6bace5fcde86b69d474cb923a981f83d2df7d67e6f7a4137facef4ee3bef6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affinity</topic><topic>Antigens</topic><topic>Binding</topic><topic>Computational Biochemistry</topic><topic>Entropy</topic><topic>Humans</topic><topic>Leukocytes</topic><topic>Ligands</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Ranking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crean, Rory M.</creatorcontrib><creatorcontrib>Pudney, Christopher R.</creatorcontrib><creatorcontrib>Cole, David K.</creatorcontrib><creatorcontrib>van der Kamp, Marc W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crean, Rory M.</au><au>Pudney, Christopher R.</au><au>Cole, David K.</au><au>van der Kamp, Marc W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable In Silico Ranking of Engineered Therapeutic TCR Binding Affinities with MMPB/GBSA</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-02-14</date><risdate>2022</risdate><volume>62</volume><issue>3</issue><spage>577</spage><epage>590</epage><pages>577-590</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>Accurate and efficient in silico ranking of protein–protein binding affinities is useful for protein design with applications in biological therapeutics. One popular approach to rank binding affinities is to apply the molecular mechanics Poisson–Boltzmann/generalized Born surface area (MMPB/GBSA) method to molecular dynamics (MD) trajectories. Here, we identify protocols that enable the reliable evaluation of T-cell receptor (TCR) variants binding to their target, peptide-human leukocyte antigens (pHLAs). We suggest different protocols for variant sets with a few (≤4) or many mutations, with entropy corrections important for the latter. We demonstrate how potential outliers could be identified in advance and that just 5–10 replicas of short (4 ns) MD simulations may be sufficient for the reproducible and accurate ranking of TCR variants. The protocols developed here can be applied toward in silico screening during the optimization of therapeutic TCRs, potentially reducing both the cost and time taken for biologic development.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35049312</pmid><doi>10.1021/acs.jcim.1c00765</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8060-3359</orcidid><orcidid>https://orcid.org/0000-0001-6211-0086</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2022-02, Vol.62 (3), p.577-590 |
issn | 1549-9596 1549-960X 1549-960X |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_470562 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Affinity Antigens Binding Computational Biochemistry Entropy Humans Leukocytes Ligands Molecular dynamics Molecular Dynamics Simulation Mutation Optimization Protein Binding Proteins Proteins - chemistry Ranking |
title | Reliable In Silico Ranking of Engineered Therapeutic TCR Binding Affinities with MMPB/GBSA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20In%20Silico%20Ranking%20of%20Engineered%20Therapeutic%20TCR%20Binding%20Affinities%20with%20MMPB/GBSA&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Crean,%20Rory%20M.&rft.date=2022-02-14&rft.volume=62&rft.issue=3&rft.spage=577&rft.epage=590&rft.pages=577-590&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.1c00765&rft_dat=%3Cproquest_swepu%3E2621660740%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a498t-6a6bace5fcde86b69d474cb923a981f83d2df7d67e6f7a4137facef4ee3bef6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2630943586&rft_id=info:pmid/35049312&rfr_iscdi=true |