Loading…

Internal dynamics in condensed matter, as studied by spin relaxation: some examples from 75 years

The present year 2021 celebrates the 75th anniversary of the nuclear magnetic resonance method (NMR), which has had an immense importance for several branches of physics, chemistry and biology. The splitting of resonances and the shifts in their positions are seemingly inexhaustible sources of infor...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal H 2022, Vol.47 (1), Article 4
Main Author: Karlsson, Erik B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present year 2021 celebrates the 75th anniversary of the nuclear magnetic resonance method (NMR), which has had an immense importance for several branches of physics, chemistry and biology. The splitting of resonances and the shifts in their positions are seemingly inexhaustible sources of information for organic chemistry and biology. It was first introduced for the study of nuclear spins and their associated magnetic properties and when it was observed that resonance lines were broadened by the action of fluctuating local magnetic fields it was first seen as a limitation for the exact determination of nuclear properties. However, it was soon realized that the broadening contained important information on the dynamics of atoms, molecules or cooperative spin systems surrounding the nuclei and spin perturbations became a well-developed tool for investigation of internal dynamics in liquids and solids, over time-ranges from seconds down to femtoseconds. The present article is an attempt to review this latter line of development and to pick out a series of examples of internal dynamics in different physical systems published over the past 75 years. Examples include motions of particles in solids, magnetic resonance imaging (MRI), critical phenomena around phase transitions, functioning of biomolecules and recent applications to spintronics and quantum computing. Other spin-based spectroscopies followed in the tracks of NMR with use of electron spins (in electron spin resonance ESR also called electron paramagnetic resonance EPR, and ferromagnetic resonance, FMR), excited nuclear states (by observation of perturbations in angular correlation of gamma-rays, PAC) and later also muon spins (muon spin relaxation, MuSR), from which other examples are selected.
ISSN:2102-6459
2102-6467
2102-6467
DOI:10.1140/epjh/s13129-021-00030-9