Loading…

Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions

Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2022-09, Vol.127 (9), p.n/a
Main Authors: Wang, Shan, Bessho, Naoki, Graham, Daniel B., Le Contel, Olivier, Wilder, Frederick D., Khotyaintsev, Yuri V., Genestreti, Kevin J., Lavraud, Benoit, Choi, Seung, Burch, James L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33
cites cdi_FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33
container_end_page n/a
container_issue 9
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 127
creator Wang, Shan
Bessho, Naoki
Graham, Daniel B.
Le Contel, Olivier
Wilder, Frederick D.
Khotyaintsev, Yuri V.
Genestreti, Kevin J.
Lavraud, Benoit
Choi, Seung
Burch, James L.
description Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities. Key Points In EDRs observed by MMS, electron distributions of background plus beams excite whistler by beam drift and anisotropy of both populations Different types of distributions and waves are inferred to depend on the distance from the X‐line A parametric study with the linear instability analysis is used to discuss the competition between different whistler modes
doi_str_mv 10.1029/2022JA030882
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_486303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718113852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33</originalsourceid><addsrcrecordid>eNp90d1r2zAQAHAzOlho-7Y_wLRPhabVhz-kR68fSUvGIGzLy0DI8jlRcK1UZzfkv6-Mu617mV7uOH466bgo-kzJFSVMXjPC2GNBOBGCfYgmjGZyKhPCjn7nXJBP0SniloQjQommk-jXamOxa8DHK_0CGBeIzljdQRWvbLeJ7xownXdt_AX0E8a2jb_qdQud2-keIV6CcW0biA3k1tZ1j0O2hHUIeBJ9rHWDcPoWj6Mf93ffb-bTxbfZw02xmJpEZGyac6N1mvEqqQmjZVVXOVDO0jTlwpQyL6sk1yWVEiQDYEQnGRhSy4qT4Srnx9Hl2Bf3sOtLtfP2SfuDctqqW_uzUM6vVd-r8BonAz8bucPOKjS2A7N5m0NRIQSneUAXI9ro5p-G82KhhhrhIktIwl5osOej3Xn33AN2aut634aRFcupoJSLlP39pfEO0UP9py0laliher_CwPnI97aBw3-tepwtizTnkvFXe6ebMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718113852</pqid></control><display><type>article</type><title>Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Shan ; Bessho, Naoki ; Graham, Daniel B. ; Le Contel, Olivier ; Wilder, Frederick D. ; Khotyaintsev, Yuri V. ; Genestreti, Kevin J. ; Lavraud, Benoit ; Choi, Seung ; Burch, James L.</creator><creatorcontrib>Wang, Shan ; Bessho, Naoki ; Graham, Daniel B. ; Le Contel, Olivier ; Wilder, Frederick D. ; Khotyaintsev, Yuri V. ; Genestreti, Kevin J. ; Lavraud, Benoit ; Choi, Seung ; Burch, James L. ; Univ. of Maryland, College Park, MD (United States)</creatorcontrib><description>Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities. Key Points In EDRs observed by MMS, electron distributions of background plus beams excite whistler by beam drift and anisotropy of both populations Different types of distributions and waves are inferred to depend on the distance from the X‐line A parametric study with the linear instability analysis is used to discuss the competition between different whistler modes</description><identifier>ISSN: 2169-9380</identifier><identifier>ISSN: 2169-9402</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2022JA030882</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Broadband ; Cyclotron resonance ; Diffusion ; Doppler effect ; Earth and Planetary Astrophysics ; Electron beams ; Electron diffusion ; Landau resonance ; magnetic reconnection ; Magnetopause ; Magnetopause reconnection ; Physics ; Resonance ; Stability analysis ; Waves ; whistler wave ; Whistler waves</subject><ispartof>Journal of geophysical research. Space physics, 2022-09, Vol.127 (9), p.n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33</citedby><cites>FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33</cites><orcidid>0000-0003-0452-8403 ; 0000-0002-5431-174X ; 0000-0002-6783-7759 ; 0000-0003-2713-7966 ; 0000-0001-6890-2973 ; 0000-0001-6807-8494 ; 0000-0002-1046-746X ; 0000-0001-5550-3113 ; 0000000304528403 ; 000000021046746X ; 0000000168078494 ; 0000000168902973 ; 000000025431174X ; 0000000327137966 ; 0000000267837759 ; 0000000155503113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03864042$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1888317$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-486303$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shan</creatorcontrib><creatorcontrib>Bessho, Naoki</creatorcontrib><creatorcontrib>Graham, Daniel B.</creatorcontrib><creatorcontrib>Le Contel, Olivier</creatorcontrib><creatorcontrib>Wilder, Frederick D.</creatorcontrib><creatorcontrib>Khotyaintsev, Yuri V.</creatorcontrib><creatorcontrib>Genestreti, Kevin J.</creatorcontrib><creatorcontrib>Lavraud, Benoit</creatorcontrib><creatorcontrib>Choi, Seung</creatorcontrib><creatorcontrib>Burch, James L.</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><title>Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions</title><title>Journal of geophysical research. Space physics</title><description>Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities. Key Points In EDRs observed by MMS, electron distributions of background plus beams excite whistler by beam drift and anisotropy of both populations Different types of distributions and waves are inferred to depend on the distance from the X‐line A parametric study with the linear instability analysis is used to discuss the competition between different whistler modes</description><subject>Anisotropy</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Broadband</subject><subject>Cyclotron resonance</subject><subject>Diffusion</subject><subject>Doppler effect</subject><subject>Earth and Planetary Astrophysics</subject><subject>Electron beams</subject><subject>Electron diffusion</subject><subject>Landau resonance</subject><subject>magnetic reconnection</subject><subject>Magnetopause</subject><subject>Magnetopause reconnection</subject><subject>Physics</subject><subject>Resonance</subject><subject>Stability analysis</subject><subject>Waves</subject><subject>whistler wave</subject><subject>Whistler waves</subject><issn>2169-9380</issn><issn>2169-9402</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90d1r2zAQAHAzOlho-7Y_wLRPhabVhz-kR68fSUvGIGzLy0DI8jlRcK1UZzfkv6-Mu617mV7uOH466bgo-kzJFSVMXjPC2GNBOBGCfYgmjGZyKhPCjn7nXJBP0SniloQjQommk-jXamOxa8DHK_0CGBeIzljdQRWvbLeJ7xownXdt_AX0E8a2jb_qdQud2-keIV6CcW0biA3k1tZ1j0O2hHUIeBJ9rHWDcPoWj6Mf93ffb-bTxbfZw02xmJpEZGyac6N1mvEqqQmjZVVXOVDO0jTlwpQyL6sk1yWVEiQDYEQnGRhSy4qT4Srnx9Hl2Bf3sOtLtfP2SfuDctqqW_uzUM6vVd-r8BonAz8bucPOKjS2A7N5m0NRIQSneUAXI9ro5p-G82KhhhrhIktIwl5osOej3Xn33AN2aut634aRFcupoJSLlP39pfEO0UP9py0laliher_CwPnI97aBw3-tepwtizTnkvFXe6ebMA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Wang, Shan</creator><creator>Bessho, Naoki</creator><creator>Graham, Daniel B.</creator><creator>Le Contel, Olivier</creator><creator>Wilder, Frederick D.</creator><creator>Khotyaintsev, Yuri V.</creator><creator>Genestreti, Kevin J.</creator><creator>Lavraud, Benoit</creator><creator>Choi, Seung</creator><creator>Burch, James L.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union/Wiley</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-0452-8403</orcidid><orcidid>https://orcid.org/0000-0002-5431-174X</orcidid><orcidid>https://orcid.org/0000-0002-6783-7759</orcidid><orcidid>https://orcid.org/0000-0003-2713-7966</orcidid><orcidid>https://orcid.org/0000-0001-6890-2973</orcidid><orcidid>https://orcid.org/0000-0001-6807-8494</orcidid><orcidid>https://orcid.org/0000-0002-1046-746X</orcidid><orcidid>https://orcid.org/0000-0001-5550-3113</orcidid><orcidid>https://orcid.org/0000000304528403</orcidid><orcidid>https://orcid.org/000000021046746X</orcidid><orcidid>https://orcid.org/0000000168078494</orcidid><orcidid>https://orcid.org/0000000168902973</orcidid><orcidid>https://orcid.org/000000025431174X</orcidid><orcidid>https://orcid.org/0000000327137966</orcidid><orcidid>https://orcid.org/0000000267837759</orcidid><orcidid>https://orcid.org/0000000155503113</orcidid></search><sort><creationdate>202209</creationdate><title>Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions</title><author>Wang, Shan ; Bessho, Naoki ; Graham, Daniel B. ; Le Contel, Olivier ; Wilder, Frederick D. ; Khotyaintsev, Yuri V. ; Genestreti, Kevin J. ; Lavraud, Benoit ; Choi, Seung ; Burch, James L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Broadband</topic><topic>Cyclotron resonance</topic><topic>Diffusion</topic><topic>Doppler effect</topic><topic>Earth and Planetary Astrophysics</topic><topic>Electron beams</topic><topic>Electron diffusion</topic><topic>Landau resonance</topic><topic>magnetic reconnection</topic><topic>Magnetopause</topic><topic>Magnetopause reconnection</topic><topic>Physics</topic><topic>Resonance</topic><topic>Stability analysis</topic><topic>Waves</topic><topic>whistler wave</topic><topic>Whistler waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shan</creatorcontrib><creatorcontrib>Bessho, Naoki</creatorcontrib><creatorcontrib>Graham, Daniel B.</creatorcontrib><creatorcontrib>Le Contel, Olivier</creatorcontrib><creatorcontrib>Wilder, Frederick D.</creatorcontrib><creatorcontrib>Khotyaintsev, Yuri V.</creatorcontrib><creatorcontrib>Genestreti, Kevin J.</creatorcontrib><creatorcontrib>Lavraud, Benoit</creatorcontrib><creatorcontrib>Choi, Seung</creatorcontrib><creatorcontrib>Burch, James L.</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shan</au><au>Bessho, Naoki</au><au>Graham, Daniel B.</au><au>Le Contel, Olivier</au><au>Wilder, Frederick D.</au><au>Khotyaintsev, Yuri V.</au><au>Genestreti, Kevin J.</au><au>Lavraud, Benoit</au><au>Choi, Seung</au><au>Burch, James L.</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2022-09</date><risdate>2022</risdate><volume>127</volume><issue>9</issue><epage>n/a</epage><issn>2169-9380</issn><issn>2169-9402</issn><eissn>2169-9402</eissn><abstract>Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities. Key Points In EDRs observed by MMS, electron distributions of background plus beams excite whistler by beam drift and anisotropy of both populations Different types of distributions and waves are inferred to depend on the distance from the X‐line A parametric study with the linear instability analysis is used to discuss the competition between different whistler modes</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2022JA030882</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0452-8403</orcidid><orcidid>https://orcid.org/0000-0002-5431-174X</orcidid><orcidid>https://orcid.org/0000-0002-6783-7759</orcidid><orcidid>https://orcid.org/0000-0003-2713-7966</orcidid><orcidid>https://orcid.org/0000-0001-6890-2973</orcidid><orcidid>https://orcid.org/0000-0001-6807-8494</orcidid><orcidid>https://orcid.org/0000-0002-1046-746X</orcidid><orcidid>https://orcid.org/0000-0001-5550-3113</orcidid><orcidid>https://orcid.org/0000000304528403</orcidid><orcidid>https://orcid.org/000000021046746X</orcidid><orcidid>https://orcid.org/0000000168078494</orcidid><orcidid>https://orcid.org/0000000168902973</orcidid><orcidid>https://orcid.org/000000025431174X</orcidid><orcidid>https://orcid.org/0000000327137966</orcidid><orcidid>https://orcid.org/0000000267837759</orcidid><orcidid>https://orcid.org/0000000155503113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2022-09, Vol.127 (9), p.n/a
issn 2169-9380
2169-9402
2169-9402
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_486303
source Wiley-Blackwell Read & Publish Collection
subjects Anisotropy
ASTRONOMY AND ASTROPHYSICS
Astrophysics
Broadband
Cyclotron resonance
Diffusion
Doppler effect
Earth and Planetary Astrophysics
Electron beams
Electron diffusion
Landau resonance
magnetic reconnection
Magnetopause
Magnetopause reconnection
Physics
Resonance
Stability analysis
Waves
whistler wave
Whistler waves
title Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whistler%20Waves%20Associated%20With%20Electron%20Beams%20in%20Magnetopause%20Reconnection%20Diffusion%20Regions&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Wang,%20Shan&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2022-09&rft.volume=127&rft.issue=9&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2022JA030882&rft_dat=%3Cproquest_swepu%3E2718113852%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718113852&rft_id=info:pmid/&rfr_iscdi=true