Loading…
Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions
Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipt...
Saved in:
Published in: | Journal of geophysical research. Space physics 2022-09, Vol.127 (9), p.n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33 |
container_end_page | n/a |
container_issue | 9 |
container_start_page | |
container_title | Journal of geophysical research. Space physics |
container_volume | 127 |
creator | Wang, Shan Bessho, Naoki Graham, Daniel B. Le Contel, Olivier Wilder, Frederick D. Khotyaintsev, Yuri V. Genestreti, Kevin J. Lavraud, Benoit Choi, Seung Burch, James L. |
description | Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities.
Key Points
In EDRs observed by MMS, electron distributions of background plus beams excite whistler by beam drift and anisotropy of both populations
Different types of distributions and waves are inferred to depend on the distance from the X‐line
A parametric study with the linear instability analysis is used to discuss the competition between different whistler modes |
doi_str_mv | 10.1029/2022JA030882 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_486303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718113852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33</originalsourceid><addsrcrecordid>eNp90d1r2zAQAHAzOlho-7Y_wLRPhabVhz-kR68fSUvGIGzLy0DI8jlRcK1UZzfkv6-Mu617mV7uOH466bgo-kzJFSVMXjPC2GNBOBGCfYgmjGZyKhPCjn7nXJBP0SniloQjQommk-jXamOxa8DHK_0CGBeIzljdQRWvbLeJ7xownXdt_AX0E8a2jb_qdQud2-keIV6CcW0biA3k1tZ1j0O2hHUIeBJ9rHWDcPoWj6Mf93ffb-bTxbfZw02xmJpEZGyac6N1mvEqqQmjZVVXOVDO0jTlwpQyL6sk1yWVEiQDYEQnGRhSy4qT4Srnx9Hl2Bf3sOtLtfP2SfuDctqqW_uzUM6vVd-r8BonAz8bucPOKjS2A7N5m0NRIQSneUAXI9ro5p-G82KhhhrhIktIwl5osOej3Xn33AN2aut634aRFcupoJSLlP39pfEO0UP9py0laliher_CwPnI97aBw3-tepwtizTnkvFXe6ebMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718113852</pqid></control><display><type>article</type><title>Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Shan ; Bessho, Naoki ; Graham, Daniel B. ; Le Contel, Olivier ; Wilder, Frederick D. ; Khotyaintsev, Yuri V. ; Genestreti, Kevin J. ; Lavraud, Benoit ; Choi, Seung ; Burch, James L.</creator><creatorcontrib>Wang, Shan ; Bessho, Naoki ; Graham, Daniel B. ; Le Contel, Olivier ; Wilder, Frederick D. ; Khotyaintsev, Yuri V. ; Genestreti, Kevin J. ; Lavraud, Benoit ; Choi, Seung ; Burch, James L. ; Univ. of Maryland, College Park, MD (United States)</creatorcontrib><description>Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities.
Key Points
In EDRs observed by MMS, electron distributions of background plus beams excite whistler by beam drift and anisotropy of both populations
Different types of distributions and waves are inferred to depend on the distance from the X‐line
A parametric study with the linear instability analysis is used to discuss the competition between different whistler modes</description><identifier>ISSN: 2169-9380</identifier><identifier>ISSN: 2169-9402</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2022JA030882</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Broadband ; Cyclotron resonance ; Diffusion ; Doppler effect ; Earth and Planetary Astrophysics ; Electron beams ; Electron diffusion ; Landau resonance ; magnetic reconnection ; Magnetopause ; Magnetopause reconnection ; Physics ; Resonance ; Stability analysis ; Waves ; whistler wave ; Whistler waves</subject><ispartof>Journal of geophysical research. Space physics, 2022-09, Vol.127 (9), p.n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33</citedby><cites>FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33</cites><orcidid>0000-0003-0452-8403 ; 0000-0002-5431-174X ; 0000-0002-6783-7759 ; 0000-0003-2713-7966 ; 0000-0001-6890-2973 ; 0000-0001-6807-8494 ; 0000-0002-1046-746X ; 0000-0001-5550-3113 ; 0000000304528403 ; 000000021046746X ; 0000000168078494 ; 0000000168902973 ; 000000025431174X ; 0000000327137966 ; 0000000267837759 ; 0000000155503113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03864042$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1888317$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-486303$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shan</creatorcontrib><creatorcontrib>Bessho, Naoki</creatorcontrib><creatorcontrib>Graham, Daniel B.</creatorcontrib><creatorcontrib>Le Contel, Olivier</creatorcontrib><creatorcontrib>Wilder, Frederick D.</creatorcontrib><creatorcontrib>Khotyaintsev, Yuri V.</creatorcontrib><creatorcontrib>Genestreti, Kevin J.</creatorcontrib><creatorcontrib>Lavraud, Benoit</creatorcontrib><creatorcontrib>Choi, Seung</creatorcontrib><creatorcontrib>Burch, James L.</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><title>Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions</title><title>Journal of geophysical research. Space physics</title><description>Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities.
Key Points
In EDRs observed by MMS, electron distributions of background plus beams excite whistler by beam drift and anisotropy of both populations
Different types of distributions and waves are inferred to depend on the distance from the X‐line
A parametric study with the linear instability analysis is used to discuss the competition between different whistler modes</description><subject>Anisotropy</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Broadband</subject><subject>Cyclotron resonance</subject><subject>Diffusion</subject><subject>Doppler effect</subject><subject>Earth and Planetary Astrophysics</subject><subject>Electron beams</subject><subject>Electron diffusion</subject><subject>Landau resonance</subject><subject>magnetic reconnection</subject><subject>Magnetopause</subject><subject>Magnetopause reconnection</subject><subject>Physics</subject><subject>Resonance</subject><subject>Stability analysis</subject><subject>Waves</subject><subject>whistler wave</subject><subject>Whistler waves</subject><issn>2169-9380</issn><issn>2169-9402</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90d1r2zAQAHAzOlho-7Y_wLRPhabVhz-kR68fSUvGIGzLy0DI8jlRcK1UZzfkv6-Mu617mV7uOH466bgo-kzJFSVMXjPC2GNBOBGCfYgmjGZyKhPCjn7nXJBP0SniloQjQommk-jXamOxa8DHK_0CGBeIzljdQRWvbLeJ7xownXdt_AX0E8a2jb_qdQud2-keIV6CcW0biA3k1tZ1j0O2hHUIeBJ9rHWDcPoWj6Mf93ffb-bTxbfZw02xmJpEZGyac6N1mvEqqQmjZVVXOVDO0jTlwpQyL6sk1yWVEiQDYEQnGRhSy4qT4Srnx9Hl2Bf3sOtLtfP2SfuDctqqW_uzUM6vVd-r8BonAz8bucPOKjS2A7N5m0NRIQSneUAXI9ro5p-G82KhhhrhIktIwl5osOej3Xn33AN2aut634aRFcupoJSLlP39pfEO0UP9py0laliher_CwPnI97aBw3-tepwtizTnkvFXe6ebMA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Wang, Shan</creator><creator>Bessho, Naoki</creator><creator>Graham, Daniel B.</creator><creator>Le Contel, Olivier</creator><creator>Wilder, Frederick D.</creator><creator>Khotyaintsev, Yuri V.</creator><creator>Genestreti, Kevin J.</creator><creator>Lavraud, Benoit</creator><creator>Choi, Seung</creator><creator>Burch, James L.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union/Wiley</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-0452-8403</orcidid><orcidid>https://orcid.org/0000-0002-5431-174X</orcidid><orcidid>https://orcid.org/0000-0002-6783-7759</orcidid><orcidid>https://orcid.org/0000-0003-2713-7966</orcidid><orcidid>https://orcid.org/0000-0001-6890-2973</orcidid><orcidid>https://orcid.org/0000-0001-6807-8494</orcidid><orcidid>https://orcid.org/0000-0002-1046-746X</orcidid><orcidid>https://orcid.org/0000-0001-5550-3113</orcidid><orcidid>https://orcid.org/0000000304528403</orcidid><orcidid>https://orcid.org/000000021046746X</orcidid><orcidid>https://orcid.org/0000000168078494</orcidid><orcidid>https://orcid.org/0000000168902973</orcidid><orcidid>https://orcid.org/000000025431174X</orcidid><orcidid>https://orcid.org/0000000327137966</orcidid><orcidid>https://orcid.org/0000000267837759</orcidid><orcidid>https://orcid.org/0000000155503113</orcidid></search><sort><creationdate>202209</creationdate><title>Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions</title><author>Wang, Shan ; Bessho, Naoki ; Graham, Daniel B. ; Le Contel, Olivier ; Wilder, Frederick D. ; Khotyaintsev, Yuri V. ; Genestreti, Kevin J. ; Lavraud, Benoit ; Choi, Seung ; Burch, James L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Broadband</topic><topic>Cyclotron resonance</topic><topic>Diffusion</topic><topic>Doppler effect</topic><topic>Earth and Planetary Astrophysics</topic><topic>Electron beams</topic><topic>Electron diffusion</topic><topic>Landau resonance</topic><topic>magnetic reconnection</topic><topic>Magnetopause</topic><topic>Magnetopause reconnection</topic><topic>Physics</topic><topic>Resonance</topic><topic>Stability analysis</topic><topic>Waves</topic><topic>whistler wave</topic><topic>Whistler waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shan</creatorcontrib><creatorcontrib>Bessho, Naoki</creatorcontrib><creatorcontrib>Graham, Daniel B.</creatorcontrib><creatorcontrib>Le Contel, Olivier</creatorcontrib><creatorcontrib>Wilder, Frederick D.</creatorcontrib><creatorcontrib>Khotyaintsev, Yuri V.</creatorcontrib><creatorcontrib>Genestreti, Kevin J.</creatorcontrib><creatorcontrib>Lavraud, Benoit</creatorcontrib><creatorcontrib>Choi, Seung</creatorcontrib><creatorcontrib>Burch, James L.</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shan</au><au>Bessho, Naoki</au><au>Graham, Daniel B.</au><au>Le Contel, Olivier</au><au>Wilder, Frederick D.</au><au>Khotyaintsev, Yuri V.</au><au>Genestreti, Kevin J.</au><au>Lavraud, Benoit</au><au>Choi, Seung</au><au>Burch, James L.</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2022-09</date><risdate>2022</risdate><volume>127</volume><issue>9</issue><epage>n/a</epage><issn>2169-9380</issn><issn>2169-9402</issn><eissn>2169-9402</eissn><abstract>Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities.
Key Points
In EDRs observed by MMS, electron distributions of background plus beams excite whistler by beam drift and anisotropy of both populations
Different types of distributions and waves are inferred to depend on the distance from the X‐line
A parametric study with the linear instability analysis is used to discuss the competition between different whistler modes</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2022JA030882</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0452-8403</orcidid><orcidid>https://orcid.org/0000-0002-5431-174X</orcidid><orcidid>https://orcid.org/0000-0002-6783-7759</orcidid><orcidid>https://orcid.org/0000-0003-2713-7966</orcidid><orcidid>https://orcid.org/0000-0001-6890-2973</orcidid><orcidid>https://orcid.org/0000-0001-6807-8494</orcidid><orcidid>https://orcid.org/0000-0002-1046-746X</orcidid><orcidid>https://orcid.org/0000-0001-5550-3113</orcidid><orcidid>https://orcid.org/0000000304528403</orcidid><orcidid>https://orcid.org/000000021046746X</orcidid><orcidid>https://orcid.org/0000000168078494</orcidid><orcidid>https://orcid.org/0000000168902973</orcidid><orcidid>https://orcid.org/000000025431174X</orcidid><orcidid>https://orcid.org/0000000327137966</orcidid><orcidid>https://orcid.org/0000000267837759</orcidid><orcidid>https://orcid.org/0000000155503113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2022-09, Vol.127 (9), p.n/a |
issn | 2169-9380 2169-9402 2169-9402 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_486303 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Anisotropy ASTRONOMY AND ASTROPHYSICS Astrophysics Broadband Cyclotron resonance Diffusion Doppler effect Earth and Planetary Astrophysics Electron beams Electron diffusion Landau resonance magnetic reconnection Magnetopause Magnetopause reconnection Physics Resonance Stability analysis Waves whistler wave Whistler waves |
title | Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whistler%20Waves%20Associated%20With%20Electron%20Beams%20in%20Magnetopause%20Reconnection%20Diffusion%20Regions&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Wang,%20Shan&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2022-09&rft.volume=127&rft.issue=9&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2022JA030882&rft_dat=%3Cproquest_swepu%3E2718113852%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4862-73caa563d4f021bdfd7e13255538cb97bd47ab199e92ee20a46ec0f9d3073ca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718113852&rft_id=info:pmid/&rfr_iscdi=true |