Loading…
Spatial genomics maps the structure, nature and evolution of cancer clones
Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour 1 – 3 . Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive 4 , 5 . Here, to address this...
Saved in:
Published in: | Nature (London) 2022-11, Vol.611 (7936), p.594-602 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c638t-17878d5fef78f12a252c006ca5a7fa9d6a33045c545c4819143e8e8d8e5e3a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c638t-17878d5fef78f12a252c006ca5a7fa9d6a33045c545c4819143e8e8d8e5e3a63 |
container_end_page | 602 |
container_issue | 7936 |
container_start_page | 594 |
container_title | Nature (London) |
container_volume | 611 |
creator | Lomakin, Artem Svedlund, Jessica Strell, Carina Gataric, Milana Shmatko, Artem Rukhovich, Gleb Park, Jun Sung Ju, Young Seok Dentro, Stefan Kleshchevnikov, Vitalii Vaskivskyi, Vasyl Li, Tong Bayraktar, Omer Ali Pinder, Sarah Richardson, Andrea L. Santagata, Sandro Campbell, Peter J. Russnes, Hege Gerstung, Moritz Nilsson, Mats Yates, Lucy R. |
description | Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour
1
–
3
. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive
4
,
5
. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.
A workflow centred around base-specific in situ sequencing generates detailed maps of, and can phenotypically characterize, the unique set of subclones of cancers. |
doi_str_mv | 10.1038/s41586-022-05425-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_492447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738248288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-17878d5fef78f12a252c006ca5a7fa9d6a33045c545c4819143e8e8d8e5e3a63</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi1ERZfCH-AAlrhwaIq_41wqVeWrVSUOVFwt40y2rhJ7seMi_j1Od1soB4Qlaw7zzLwzoxehF5QcUcL12yyo1KohjDVECiYb9gitqGhVI5RuH6MVIUw3RHO1j57mfE0IkbQVT9A-V1yy-lbo_MvGzt6OeA0hTt5lPNlNxvMV4Dyn4uaS4BAHu0RsQ4_hJo5l9jHgOGBng4OE3RgD5Gdob7Bjhue7eIAuP7y_PP3UXHz-eHZ6ctE4xfXc0Fa3upcDDK0eKLNMMkeIclbadrBdryznREgn6xeadlRw0KB7DRK4VfwAHW7b5h-wKd_MJvnJpp8mWm_e-a8nJqa1KcWIjgnR_h-ei2GUsY5V_HiLV3aC3kGYkx0fVD3MBH9l1vHGdKreXCzjvdo2cMnn2QcTYrKGEi2Z6Tp6K_FmJ5Hi9wJ5NpPPDsbRBoglG9ZySZXuJK3o67_Q61hSqNddKM2EZlpXit1JxpwTDPfjUmIWp5itU0x1irl1ilmmePnnovcld9aoAN8drqbCGtJv7X-0_QUoJcg3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738248288</pqid></control><display><type>article</type><title>Spatial genomics maps the structure, nature and evolution of cancer clones</title><source>Nature_系列刊</source><source>NORA - Norwegian Open Research Archives</source><creator>Lomakin, Artem ; Svedlund, Jessica ; Strell, Carina ; Gataric, Milana ; Shmatko, Artem ; Rukhovich, Gleb ; Park, Jun Sung ; Ju, Young Seok ; Dentro, Stefan ; Kleshchevnikov, Vitalii ; Vaskivskyi, Vasyl ; Li, Tong ; Bayraktar, Omer Ali ; Pinder, Sarah ; Richardson, Andrea L. ; Santagata, Sandro ; Campbell, Peter J. ; Russnes, Hege ; Gerstung, Moritz ; Nilsson, Mats ; Yates, Lucy R.</creator><creatorcontrib>Lomakin, Artem ; Svedlund, Jessica ; Strell, Carina ; Gataric, Milana ; Shmatko, Artem ; Rukhovich, Gleb ; Park, Jun Sung ; Ju, Young Seok ; Dentro, Stefan ; Kleshchevnikov, Vitalii ; Vaskivskyi, Vasyl ; Li, Tong ; Bayraktar, Omer Ali ; Pinder, Sarah ; Richardson, Andrea L. ; Santagata, Sandro ; Campbell, Peter J. ; Russnes, Hege ; Gerstung, Moritz ; Nilsson, Mats ; Yates, Lucy R.</creatorcontrib><description>Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour
1
–
3
. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive
4
,
5
. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.
A workflow centred around base-specific in situ sequencing generates detailed maps of, and can phenotypically characterize, the unique set of subclones of cancers.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05425-2</identifier><identifier>PMID: 36352222</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 14/32 ; 45/23 ; 45/91 ; 631/114/1305 ; 631/114/2397 ; 631/208/69 ; 631/67/1347 ; 631/67/69 ; Algorithms ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; Cancer ; Carcinoma, Intraductal, Noninfiltrating - genetics ; Carcinoma, Intraductal, Noninfiltrating - pathology ; Clonal Evolution - genetics ; Clone Cells - metabolism ; Clone Cells - pathology ; Cloning ; Composition ; Ecology ; Evolution ; Experiments ; Female ; Gene expression ; Gene mapping ; Gene sequencing ; Genomes ; Genomics ; Genotype & phenotype ; Growth patterns ; Humanities and Social Sciences ; Humans ; Lymph nodes ; Lymphatic system ; Metastases ; Microdissection ; Microenvironments ; Mosaics ; multidisciplinary ; Mutation ; Phylogenetics ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Transcriptome ; Transcriptomics ; Tumor Microenvironment - genetics ; Tumors ; Whole Genome Sequencing ; Workflow</subject><ispartof>Nature (London), 2022-11, Vol.611 (7936), p.594-602</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>Copyright Nature Publishing Group Nov 17, 2022</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-17878d5fef78f12a252c006ca5a7fa9d6a33045c545c4819143e8e8d8e5e3a63</citedby><cites>FETCH-LOGICAL-c638t-17878d5fef78f12a252c006ca5a7fa9d6a33045c545c4819143e8e8d8e5e3a63</cites><orcidid>0000-0002-4080-4965 ; 0000-0001-5221-1094 ; 0000-0003-4519-7794 ; 0000-0002-5514-4189 ; 0000-0002-8240-4476 ; 0000-0002-3921-0510 ; 0000-0001-7149-6769 ; 0000-0001-6055-277X ; 0000-0003-4167-8910 ; 0000-0002-2184-0856 ; 0000-0001-9985-0387 ; 0000-0002-0478-9729 ; 0000-0001-6709-963X ; 0000-0002-6568-9668 ; 0000-0002-7528-9668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,26544,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36352222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-212292$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-492447$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lomakin, Artem</creatorcontrib><creatorcontrib>Svedlund, Jessica</creatorcontrib><creatorcontrib>Strell, Carina</creatorcontrib><creatorcontrib>Gataric, Milana</creatorcontrib><creatorcontrib>Shmatko, Artem</creatorcontrib><creatorcontrib>Rukhovich, Gleb</creatorcontrib><creatorcontrib>Park, Jun Sung</creatorcontrib><creatorcontrib>Ju, Young Seok</creatorcontrib><creatorcontrib>Dentro, Stefan</creatorcontrib><creatorcontrib>Kleshchevnikov, Vitalii</creatorcontrib><creatorcontrib>Vaskivskyi, Vasyl</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Bayraktar, Omer Ali</creatorcontrib><creatorcontrib>Pinder, Sarah</creatorcontrib><creatorcontrib>Richardson, Andrea L.</creatorcontrib><creatorcontrib>Santagata, Sandro</creatorcontrib><creatorcontrib>Campbell, Peter J.</creatorcontrib><creatorcontrib>Russnes, Hege</creatorcontrib><creatorcontrib>Gerstung, Moritz</creatorcontrib><creatorcontrib>Nilsson, Mats</creatorcontrib><creatorcontrib>Yates, Lucy R.</creatorcontrib><title>Spatial genomics maps the structure, nature and evolution of cancer clones</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour
1
–
3
. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive
4
,
5
. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.
A workflow centred around base-specific in situ sequencing generates detailed maps of, and can phenotypically characterize, the unique set of subclones of cancers.</description><subject>13/1</subject><subject>14/32</subject><subject>45/23</subject><subject>45/91</subject><subject>631/114/1305</subject><subject>631/114/2397</subject><subject>631/208/69</subject><subject>631/67/1347</subject><subject>631/67/69</subject><subject>Algorithms</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Carcinoma, Intraductal, Noninfiltrating - genetics</subject><subject>Carcinoma, Intraductal, Noninfiltrating - pathology</subject><subject>Clonal Evolution - genetics</subject><subject>Clone Cells - metabolism</subject><subject>Clone Cells - pathology</subject><subject>Cloning</subject><subject>Composition</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Growth patterns</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lymph nodes</subject><subject>Lymphatic system</subject><subject>Metastases</subject><subject>Microdissection</subject><subject>Microenvironments</subject><subject>Mosaics</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Phylogenetics</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><subject>Tumor Microenvironment - genetics</subject><subject>Tumors</subject><subject>Whole Genome Sequencing</subject><subject>Workflow</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNkk1v1DAQhi1ERZfCH-AAlrhwaIq_41wqVeWrVSUOVFwt40y2rhJ7seMi_j1Od1soB4Qlaw7zzLwzoxehF5QcUcL12yyo1KohjDVECiYb9gitqGhVI5RuH6MVIUw3RHO1j57mfE0IkbQVT9A-V1yy-lbo_MvGzt6OeA0hTt5lPNlNxvMV4Dyn4uaS4BAHu0RsQ4_hJo5l9jHgOGBng4OE3RgD5Gdob7Bjhue7eIAuP7y_PP3UXHz-eHZ6ctE4xfXc0Fa3upcDDK0eKLNMMkeIclbadrBdryznREgn6xeadlRw0KB7DRK4VfwAHW7b5h-wKd_MJvnJpp8mWm_e-a8nJqa1KcWIjgnR_h-ei2GUsY5V_HiLV3aC3kGYkx0fVD3MBH9l1vHGdKreXCzjvdo2cMnn2QcTYrKGEi2Z6Tp6K_FmJ5Hi9wJ5NpPPDsbRBoglG9ZySZXuJK3o67_Q61hSqNddKM2EZlpXit1JxpwTDPfjUmIWp5itU0x1irl1ilmmePnnovcld9aoAN8drqbCGtJv7X-0_QUoJcg3</recordid><startdate>20221117</startdate><enddate>20221117</enddate><creator>Lomakin, Artem</creator><creator>Svedlund, Jessica</creator><creator>Strell, Carina</creator><creator>Gataric, Milana</creator><creator>Shmatko, Artem</creator><creator>Rukhovich, Gleb</creator><creator>Park, Jun Sung</creator><creator>Ju, Young Seok</creator><creator>Dentro, Stefan</creator><creator>Kleshchevnikov, Vitalii</creator><creator>Vaskivskyi, Vasyl</creator><creator>Li, Tong</creator><creator>Bayraktar, Omer Ali</creator><creator>Pinder, Sarah</creator><creator>Richardson, Andrea L.</creator><creator>Santagata, Sandro</creator><creator>Campbell, Peter J.</creator><creator>Russnes, Hege</creator><creator>Gerstung, Moritz</creator><creator>Nilsson, Mats</creator><creator>Yates, Lucy R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>ACNBI</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-4080-4965</orcidid><orcidid>https://orcid.org/0000-0001-5221-1094</orcidid><orcidid>https://orcid.org/0000-0003-4519-7794</orcidid><orcidid>https://orcid.org/0000-0002-5514-4189</orcidid><orcidid>https://orcid.org/0000-0002-8240-4476</orcidid><orcidid>https://orcid.org/0000-0002-3921-0510</orcidid><orcidid>https://orcid.org/0000-0001-7149-6769</orcidid><orcidid>https://orcid.org/0000-0001-6055-277X</orcidid><orcidid>https://orcid.org/0000-0003-4167-8910</orcidid><orcidid>https://orcid.org/0000-0002-2184-0856</orcidid><orcidid>https://orcid.org/0000-0001-9985-0387</orcidid><orcidid>https://orcid.org/0000-0002-0478-9729</orcidid><orcidid>https://orcid.org/0000-0001-6709-963X</orcidid><orcidid>https://orcid.org/0000-0002-6568-9668</orcidid><orcidid>https://orcid.org/0000-0002-7528-9668</orcidid></search><sort><creationdate>20221117</creationdate><title>Spatial genomics maps the structure, nature and evolution of cancer clones</title><author>Lomakin, Artem ; Svedlund, Jessica ; Strell, Carina ; Gataric, Milana ; Shmatko, Artem ; Rukhovich, Gleb ; Park, Jun Sung ; Ju, Young Seok ; Dentro, Stefan ; Kleshchevnikov, Vitalii ; Vaskivskyi, Vasyl ; Li, Tong ; Bayraktar, Omer Ali ; Pinder, Sarah ; Richardson, Andrea L. ; Santagata, Sandro ; Campbell, Peter J. ; Russnes, Hege ; Gerstung, Moritz ; Nilsson, Mats ; Yates, Lucy R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-17878d5fef78f12a252c006ca5a7fa9d6a33045c545c4819143e8e8d8e5e3a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/1</topic><topic>14/32</topic><topic>45/23</topic><topic>45/91</topic><topic>631/114/1305</topic><topic>631/114/2397</topic><topic>631/208/69</topic><topic>631/67/1347</topic><topic>631/67/69</topic><topic>Algorithms</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Carcinoma, Intraductal, Noninfiltrating - genetics</topic><topic>Carcinoma, Intraductal, Noninfiltrating - pathology</topic><topic>Clonal Evolution - genetics</topic><topic>Clone Cells - metabolism</topic><topic>Clone Cells - pathology</topic><topic>Cloning</topic><topic>Composition</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Growth patterns</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lymph nodes</topic><topic>Lymphatic system</topic><topic>Metastases</topic><topic>Microdissection</topic><topic>Microenvironments</topic><topic>Mosaics</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Phylogenetics</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><topic>Tumor Microenvironment - genetics</topic><topic>Tumors</topic><topic>Whole Genome Sequencing</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lomakin, Artem</creatorcontrib><creatorcontrib>Svedlund, Jessica</creatorcontrib><creatorcontrib>Strell, Carina</creatorcontrib><creatorcontrib>Gataric, Milana</creatorcontrib><creatorcontrib>Shmatko, Artem</creatorcontrib><creatorcontrib>Rukhovich, Gleb</creatorcontrib><creatorcontrib>Park, Jun Sung</creatorcontrib><creatorcontrib>Ju, Young Seok</creatorcontrib><creatorcontrib>Dentro, Stefan</creatorcontrib><creatorcontrib>Kleshchevnikov, Vitalii</creatorcontrib><creatorcontrib>Vaskivskyi, Vasyl</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Bayraktar, Omer Ali</creatorcontrib><creatorcontrib>Pinder, Sarah</creatorcontrib><creatorcontrib>Richardson, Andrea L.</creatorcontrib><creatorcontrib>Santagata, Sandro</creatorcontrib><creatorcontrib>Campbell, Peter J.</creatorcontrib><creatorcontrib>Russnes, Hege</creatorcontrib><creatorcontrib>Gerstung, Moritz</creatorcontrib><creatorcontrib>Nilsson, Mats</creatorcontrib><creatorcontrib>Yates, Lucy R.</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest_Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lomakin, Artem</au><au>Svedlund, Jessica</au><au>Strell, Carina</au><au>Gataric, Milana</au><au>Shmatko, Artem</au><au>Rukhovich, Gleb</au><au>Park, Jun Sung</au><au>Ju, Young Seok</au><au>Dentro, Stefan</au><au>Kleshchevnikov, Vitalii</au><au>Vaskivskyi, Vasyl</au><au>Li, Tong</au><au>Bayraktar, Omer Ali</au><au>Pinder, Sarah</au><au>Richardson, Andrea L.</au><au>Santagata, Sandro</au><au>Campbell, Peter J.</au><au>Russnes, Hege</au><au>Gerstung, Moritz</au><au>Nilsson, Mats</au><au>Yates, Lucy R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial genomics maps the structure, nature and evolution of cancer clones</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-11-17</date><risdate>2022</risdate><volume>611</volume><issue>7936</issue><spage>594</spage><epage>602</epage><pages>594-602</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour
1
–
3
. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive
4
,
5
. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.
A workflow centred around base-specific in situ sequencing generates detailed maps of, and can phenotypically characterize, the unique set of subclones of cancers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36352222</pmid><doi>10.1038/s41586-022-05425-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4080-4965</orcidid><orcidid>https://orcid.org/0000-0001-5221-1094</orcidid><orcidid>https://orcid.org/0000-0003-4519-7794</orcidid><orcidid>https://orcid.org/0000-0002-5514-4189</orcidid><orcidid>https://orcid.org/0000-0002-8240-4476</orcidid><orcidid>https://orcid.org/0000-0002-3921-0510</orcidid><orcidid>https://orcid.org/0000-0001-7149-6769</orcidid><orcidid>https://orcid.org/0000-0001-6055-277X</orcidid><orcidid>https://orcid.org/0000-0003-4167-8910</orcidid><orcidid>https://orcid.org/0000-0002-2184-0856</orcidid><orcidid>https://orcid.org/0000-0001-9985-0387</orcidid><orcidid>https://orcid.org/0000-0002-0478-9729</orcidid><orcidid>https://orcid.org/0000-0001-6709-963X</orcidid><orcidid>https://orcid.org/0000-0002-6568-9668</orcidid><orcidid>https://orcid.org/0000-0002-7528-9668</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-11, Vol.611 (7936), p.594-602 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_492447 |
source | Nature_系列刊; NORA - Norwegian Open Research Archives |
subjects | 13/1 14/32 45/23 45/91 631/114/1305 631/114/2397 631/208/69 631/67/1347 631/67/69 Algorithms Breast cancer Breast Neoplasms - genetics Breast Neoplasms - pathology Cancer Carcinoma, Intraductal, Noninfiltrating - genetics Carcinoma, Intraductal, Noninfiltrating - pathology Clonal Evolution - genetics Clone Cells - metabolism Clone Cells - pathology Cloning Composition Ecology Evolution Experiments Female Gene expression Gene mapping Gene sequencing Genomes Genomics Genotype & phenotype Growth patterns Humanities and Social Sciences Humans Lymph nodes Lymphatic system Metastases Microdissection Microenvironments Mosaics multidisciplinary Mutation Phylogenetics Reproducibility of Results Science Science (multidisciplinary) Transcriptome Transcriptomics Tumor Microenvironment - genetics Tumors Whole Genome Sequencing Workflow |
title | Spatial genomics maps the structure, nature and evolution of cancer clones |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20genomics%20maps%20the%20structure,%20nature%20and%20evolution%20of%20cancer%20clones&rft.jtitle=Nature%20(London)&rft.au=Lomakin,%20Artem&rft.date=2022-11-17&rft.volume=611&rft.issue=7936&rft.spage=594&rft.epage=602&rft.pages=594-602&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05425-2&rft_dat=%3Cproquest_swepu%3E2738248288%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c638t-17878d5fef78f12a252c006ca5a7fa9d6a33045c545c4819143e8e8d8e5e3a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2738248288&rft_id=info:pmid/36352222&rfr_iscdi=true |