Loading…
Connectivity, permeability and flow channelization in fractured karst reservoirs: A numerical investigation based on a two-dimensional discrete fracture-cave network model
•Coupled porous media and free flow model of fluid flow in fractured karst reservoirs.•Analytical expression of connectivity for discrete fracture-cave networks.•Flow channeling dominated by network connectivity.•Permeability scaling with connectivity in a power law for connected systems. Fractured...
Saved in:
Published in: | Advances in water resources 2022-03, Vol.161, p.104142, Article 104142 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Coupled porous media and free flow model of fluid flow in fractured karst reservoirs.•Analytical expression of connectivity for discrete fracture-cave networks.•Flow channeling dominated by network connectivity.•Permeability scaling with connectivity in a power law for connected systems.
Fractured karst reservoirs play a significant role in hydrocarbon reserves and groundwater storage. They often exhibit complex multiscale heterogeneities involving pores, fractures and caves, whose length scales range from microns to tens or hundreds of meters. Thus, the study of fractured karst reservoirs is faced with a significant unresolved challenge in quantitatively characterizing the geometrical connectivity and hydraulic conductivity as well as their interrelationships in such strongly heterogeneous, multicomponent systems. In this paper, we propose an analytical formulation to characterize the connectivity of discrete fracture-cave networks building upon the excluded area concept of the percolation theory. By implementing a state-of-the-art computational model solving coupled Navier-Stokes (free flow) and Darcy (porous media flow) equations, we numerically derive the permeability of a fractured and karstified porous media, such that the relationship between the connectivity and permeability is further explored. The high-fidelity numerical model also permits us to elucidate the process of flow channelization within the fracture-cave network. The results show that the fracture-cave network connectivity correlates to the permeability via a power law scaling for connected systems. Significant flow channeling occurs around the percolation threshold where the flow is dominated by a limited number of preferential pathways. Caves play a crucial role in the flow due to the fact that caves could globally enhance the network connectivity and locally serve as hotspots for high fluid velocity. Finally, a semi-analytical permeability model for fractured karst reservoirs is developed. The results of our research and insights obtained have important implications for understanding the subsurface fluid flow in fractured karst reservoirs. |
---|---|
ISSN: | 0309-1708 1872-9657 1872-9657 |
DOI: | 10.1016/j.advwatres.2022.104142 |