Loading…
Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes
Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summ...
Saved in:
Published in: | Global change biology 2024-01, Vol.30 (1), p.e17046-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3856-de1d1bed02b072c9015f5009e7e0dbdd431d60eee2b131868db39acae0ee3e283 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | e17046 |
container_title | Global change biology |
container_volume | 30 |
creator | Lewis, Abigail S. L. Lau, Maximilian P. Jane, Stephen F. Rose, Kevin C. Be'eri‐Shlevin, Yaron Burnet, Sarah H. Clayer, François Feuchtmayr, Heidrun Grossart, Hans‐Peter Howard, Dexter W. Mariash, Heather Delgado Martin, Jordi North, Rebecca L. Oleksy, Isabella Pilla, Rachel M. Smagula, Amy P. Sommaruga, Ruben Steiner, Sara E. Verburg, Piet Wain, Danielle Weyhenmeyer, Gesa A. Carey, Cayelan C. |
description | Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.
Declining oxygen concentrations in the deep waters of lakes worldwide pose pressing environmental and societal challenges. Existing theory suggests that deep‐water anoxia (very low dissolved oxygen) could drive a positive feedback, begetting increasingly severe occurrences of anoxia in following summers. Here, we analyzed the anoxia begets anoxia (ABA) feedback across 656 widespread temperate la |
doi_str_mv | 10.1111/gcb.17046 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_519022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918168833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3856-de1d1bed02b072c9015f5009e7e0dbdd431d60eee2b131868db39acae0ee3e283</originalsourceid><addsrcrecordid>eNp10ctO3DAUBmCrKip06KIvUFnqhkoN-Ni5OOyGKQWkkVClwtay45PBkIlDnBTm7fEQygIJb3zRp1_H-gn5CuwQ4jpaVeYQCpbmH8geiDxLeCrzj9tzlibAQOySzyHcMsYEZ_knsiskL0Qmsj3yZ976R6epwRUOgern2zGd084HN7h_SGtEa3R1RwdPhxukFv3jZoWtHpxvqa_pgOsOez0gbfQdhn2yU-sm4JeXfUaufp_-XZwny8uzi8V8mVRCZnliESwYtIwbVvCqZJDVGWMlFsissTYVYHOGiNyAAJlLa0SpK43xTSCXYkZ-TrnhAbvRqK53a91vlNdO_XLXc-X7lRpHlUHJOI_8YOJd7-9HDINau1Bh0-gW_RgUL6EsUpBpEen3N_TWj30bP7NVEnIphYjqx6Sq3ofQY_06ATC1rUXFWtRzLdF-e0kczRrtq_zfQwRHE3hwDW7eT1Jni5Mp8gl8XZXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918168833</pqid></control><display><type>article</type><title>Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lewis, Abigail S. L. ; Lau, Maximilian P. ; Jane, Stephen F. ; Rose, Kevin C. ; Be'eri‐Shlevin, Yaron ; Burnet, Sarah H. ; Clayer, François ; Feuchtmayr, Heidrun ; Grossart, Hans‐Peter ; Howard, Dexter W. ; Mariash, Heather ; Delgado Martin, Jordi ; North, Rebecca L. ; Oleksy, Isabella ; Pilla, Rachel M. ; Smagula, Amy P. ; Sommaruga, Ruben ; Steiner, Sara E. ; Verburg, Piet ; Wain, Danielle ; Weyhenmeyer, Gesa A. ; Carey, Cayelan C.</creator><creatorcontrib>Lewis, Abigail S. L. ; Lau, Maximilian P. ; Jane, Stephen F. ; Rose, Kevin C. ; Be'eri‐Shlevin, Yaron ; Burnet, Sarah H. ; Clayer, François ; Feuchtmayr, Heidrun ; Grossart, Hans‐Peter ; Howard, Dexter W. ; Mariash, Heather ; Delgado Martin, Jordi ; North, Rebecca L. ; Oleksy, Isabella ; Pilla, Rachel M. ; Smagula, Amy P. ; Sommaruga, Ruben ; Steiner, Sara E. ; Verburg, Piet ; Wain, Danielle ; Weyhenmeyer, Gesa A. ; Carey, Cayelan C.</creatorcontrib><description>Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.
Declining oxygen concentrations in the deep waters of lakes worldwide pose pressing environmental and societal challenges. Existing theory suggests that deep‐water anoxia (very low dissolved oxygen) could drive a positive feedback, begetting increasingly severe occurrences of anoxia in following summers. Here, we analyzed the anoxia begets anoxia (ABA) feedback across 656 widespread temperate lakes. We found support for all relationships, with the strength of the feedback varying with lake‐specific characteristics (e.g., size, residence time). Ultimately, the ABA feedback could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.17046</identifier><identifier>PMID: 38273535</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>air temperature ; Anoxia ; Anoxic conditions ; Anoxic sediments ; Anthropogenic factors ; Chlorophyll ; Chlorophyll a ; Climate change ; Climate effects ; Datasets ; Deoxygenation ; Dissolved oxygen ; Feedback ; Human influences ; hypolimnion ; lake ; Lakes ; Morphometry ; Nutrient release ; Oxygen ; Oxygen demand ; Oxygen requirement ; Phosphorus ; Phytoplankton ; Plankton ; Positive feedback ; residence time ; Sediments ; Summer</subject><ispartof>Global change biology, 2024-01, Vol.30 (1), p.e17046-n/a</ispartof><rights>2023 Oak Ridge National Laboratory and The Authors. published by John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</rights><rights>2023 Oak Ridge National Laboratory and The Authors. Global Change Biology published by John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3856-de1d1bed02b072c9015f5009e7e0dbdd431d60eee2b131868db39acae0ee3e283</cites><orcidid>0000-0001-6146-5838 ; 0000-0001-9156-9486 ; 0000-0003-2822-5917 ; 0000-0002-4013-2281 ; 0000-0001-8835-4476 ; 0000-0001-7574-9161 ; 0000-0001-9933-4542 ; 0000-0002-1055-2461 ; 0000-0002-1292-9381 ; 0000-0001-6939-400X ; 0000-0002-9141-0325 ; 0000-0003-3762-5939 ; 0000-0002-0675-663X ; 0000-0002-8261-8087 ; 0000-0003-2572-5457 ; 0000-0002-8071-2977 ; 0000-0003-2968-359X ; 0000-0002-2028-4843 ; 0000-0001-5091-102X ; 0000-0002-6118-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38273535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-519022$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Abigail S. L.</creatorcontrib><creatorcontrib>Lau, Maximilian P.</creatorcontrib><creatorcontrib>Jane, Stephen F.</creatorcontrib><creatorcontrib>Rose, Kevin C.</creatorcontrib><creatorcontrib>Be'eri‐Shlevin, Yaron</creatorcontrib><creatorcontrib>Burnet, Sarah H.</creatorcontrib><creatorcontrib>Clayer, François</creatorcontrib><creatorcontrib>Feuchtmayr, Heidrun</creatorcontrib><creatorcontrib>Grossart, Hans‐Peter</creatorcontrib><creatorcontrib>Howard, Dexter W.</creatorcontrib><creatorcontrib>Mariash, Heather</creatorcontrib><creatorcontrib>Delgado Martin, Jordi</creatorcontrib><creatorcontrib>North, Rebecca L.</creatorcontrib><creatorcontrib>Oleksy, Isabella</creatorcontrib><creatorcontrib>Pilla, Rachel M.</creatorcontrib><creatorcontrib>Smagula, Amy P.</creatorcontrib><creatorcontrib>Sommaruga, Ruben</creatorcontrib><creatorcontrib>Steiner, Sara E.</creatorcontrib><creatorcontrib>Verburg, Piet</creatorcontrib><creatorcontrib>Wain, Danielle</creatorcontrib><creatorcontrib>Weyhenmeyer, Gesa A.</creatorcontrib><creatorcontrib>Carey, Cayelan C.</creatorcontrib><title>Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.
Declining oxygen concentrations in the deep waters of lakes worldwide pose pressing environmental and societal challenges. Existing theory suggests that deep‐water anoxia (very low dissolved oxygen) could drive a positive feedback, begetting increasingly severe occurrences of anoxia in following summers. Here, we analyzed the anoxia begets anoxia (ABA) feedback across 656 widespread temperate lakes. We found support for all relationships, with the strength of the feedback varying with lake‐specific characteristics (e.g., size, residence time). Ultimately, the ABA feedback could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.</description><subject>air temperature</subject><subject>Anoxia</subject><subject>Anoxic conditions</subject><subject>Anoxic sediments</subject><subject>Anthropogenic factors</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Datasets</subject><subject>Deoxygenation</subject><subject>Dissolved oxygen</subject><subject>Feedback</subject><subject>Human influences</subject><subject>hypolimnion</subject><subject>lake</subject><subject>Lakes</subject><subject>Morphometry</subject><subject>Nutrient release</subject><subject>Oxygen</subject><subject>Oxygen demand</subject><subject>Oxygen requirement</subject><subject>Phosphorus</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Positive feedback</subject><subject>residence time</subject><subject>Sediments</subject><subject>Summer</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10ctO3DAUBmCrKip06KIvUFnqhkoN-Ni5OOyGKQWkkVClwtay45PBkIlDnBTm7fEQygIJb3zRp1_H-gn5CuwQ4jpaVeYQCpbmH8geiDxLeCrzj9tzlibAQOySzyHcMsYEZ_knsiskL0Qmsj3yZ976R6epwRUOgern2zGd084HN7h_SGtEa3R1RwdPhxukFv3jZoWtHpxvqa_pgOsOez0gbfQdhn2yU-sm4JeXfUaufp_-XZwny8uzi8V8mVRCZnliESwYtIwbVvCqZJDVGWMlFsissTYVYHOGiNyAAJlLa0SpK43xTSCXYkZ-TrnhAbvRqK53a91vlNdO_XLXc-X7lRpHlUHJOI_8YOJd7-9HDINau1Bh0-gW_RgUL6EsUpBpEen3N_TWj30bP7NVEnIphYjqx6Sq3ofQY_06ATC1rUXFWtRzLdF-e0kczRrtq_zfQwRHE3hwDW7eT1Jni5Mp8gl8XZXw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Lewis, Abigail S. L.</creator><creator>Lau, Maximilian P.</creator><creator>Jane, Stephen F.</creator><creator>Rose, Kevin C.</creator><creator>Be'eri‐Shlevin, Yaron</creator><creator>Burnet, Sarah H.</creator><creator>Clayer, François</creator><creator>Feuchtmayr, Heidrun</creator><creator>Grossart, Hans‐Peter</creator><creator>Howard, Dexter W.</creator><creator>Mariash, Heather</creator><creator>Delgado Martin, Jordi</creator><creator>North, Rebecca L.</creator><creator>Oleksy, Isabella</creator><creator>Pilla, Rachel M.</creator><creator>Smagula, Amy P.</creator><creator>Sommaruga, Ruben</creator><creator>Steiner, Sara E.</creator><creator>Verburg, Piet</creator><creator>Wain, Danielle</creator><creator>Weyhenmeyer, Gesa A.</creator><creator>Carey, Cayelan C.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-6146-5838</orcidid><orcidid>https://orcid.org/0000-0001-9156-9486</orcidid><orcidid>https://orcid.org/0000-0003-2822-5917</orcidid><orcidid>https://orcid.org/0000-0002-4013-2281</orcidid><orcidid>https://orcid.org/0000-0001-8835-4476</orcidid><orcidid>https://orcid.org/0000-0001-7574-9161</orcidid><orcidid>https://orcid.org/0000-0001-9933-4542</orcidid><orcidid>https://orcid.org/0000-0002-1055-2461</orcidid><orcidid>https://orcid.org/0000-0002-1292-9381</orcidid><orcidid>https://orcid.org/0000-0001-6939-400X</orcidid><orcidid>https://orcid.org/0000-0002-9141-0325</orcidid><orcidid>https://orcid.org/0000-0003-3762-5939</orcidid><orcidid>https://orcid.org/0000-0002-0675-663X</orcidid><orcidid>https://orcid.org/0000-0002-8261-8087</orcidid><orcidid>https://orcid.org/0000-0003-2572-5457</orcidid><orcidid>https://orcid.org/0000-0002-8071-2977</orcidid><orcidid>https://orcid.org/0000-0003-2968-359X</orcidid><orcidid>https://orcid.org/0000-0002-2028-4843</orcidid><orcidid>https://orcid.org/0000-0001-5091-102X</orcidid><orcidid>https://orcid.org/0000-0002-6118-2149</orcidid></search><sort><creationdate>202401</creationdate><title>Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes</title><author>Lewis, Abigail S. L. ; Lau, Maximilian P. ; Jane, Stephen F. ; Rose, Kevin C. ; Be'eri‐Shlevin, Yaron ; Burnet, Sarah H. ; Clayer, François ; Feuchtmayr, Heidrun ; Grossart, Hans‐Peter ; Howard, Dexter W. ; Mariash, Heather ; Delgado Martin, Jordi ; North, Rebecca L. ; Oleksy, Isabella ; Pilla, Rachel M. ; Smagula, Amy P. ; Sommaruga, Ruben ; Steiner, Sara E. ; Verburg, Piet ; Wain, Danielle ; Weyhenmeyer, Gesa A. ; Carey, Cayelan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3856-de1d1bed02b072c9015f5009e7e0dbdd431d60eee2b131868db39acae0ee3e283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>air temperature</topic><topic>Anoxia</topic><topic>Anoxic conditions</topic><topic>Anoxic sediments</topic><topic>Anthropogenic factors</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Datasets</topic><topic>Deoxygenation</topic><topic>Dissolved oxygen</topic><topic>Feedback</topic><topic>Human influences</topic><topic>hypolimnion</topic><topic>lake</topic><topic>Lakes</topic><topic>Morphometry</topic><topic>Nutrient release</topic><topic>Oxygen</topic><topic>Oxygen demand</topic><topic>Oxygen requirement</topic><topic>Phosphorus</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Positive feedback</topic><topic>residence time</topic><topic>Sediments</topic><topic>Summer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Abigail S. L.</creatorcontrib><creatorcontrib>Lau, Maximilian P.</creatorcontrib><creatorcontrib>Jane, Stephen F.</creatorcontrib><creatorcontrib>Rose, Kevin C.</creatorcontrib><creatorcontrib>Be'eri‐Shlevin, Yaron</creatorcontrib><creatorcontrib>Burnet, Sarah H.</creatorcontrib><creatorcontrib>Clayer, François</creatorcontrib><creatorcontrib>Feuchtmayr, Heidrun</creatorcontrib><creatorcontrib>Grossart, Hans‐Peter</creatorcontrib><creatorcontrib>Howard, Dexter W.</creatorcontrib><creatorcontrib>Mariash, Heather</creatorcontrib><creatorcontrib>Delgado Martin, Jordi</creatorcontrib><creatorcontrib>North, Rebecca L.</creatorcontrib><creatorcontrib>Oleksy, Isabella</creatorcontrib><creatorcontrib>Pilla, Rachel M.</creatorcontrib><creatorcontrib>Smagula, Amy P.</creatorcontrib><creatorcontrib>Sommaruga, Ruben</creatorcontrib><creatorcontrib>Steiner, Sara E.</creatorcontrib><creatorcontrib>Verburg, Piet</creatorcontrib><creatorcontrib>Wain, Danielle</creatorcontrib><creatorcontrib>Weyhenmeyer, Gesa A.</creatorcontrib><creatorcontrib>Carey, Cayelan C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Abigail S. L.</au><au>Lau, Maximilian P.</au><au>Jane, Stephen F.</au><au>Rose, Kevin C.</au><au>Be'eri‐Shlevin, Yaron</au><au>Burnet, Sarah H.</au><au>Clayer, François</au><au>Feuchtmayr, Heidrun</au><au>Grossart, Hans‐Peter</au><au>Howard, Dexter W.</au><au>Mariash, Heather</au><au>Delgado Martin, Jordi</au><au>North, Rebecca L.</au><au>Oleksy, Isabella</au><au>Pilla, Rachel M.</au><au>Smagula, Amy P.</au><au>Sommaruga, Ruben</au><au>Steiner, Sara E.</au><au>Verburg, Piet</au><au>Wain, Danielle</au><au>Weyhenmeyer, Gesa A.</au><au>Carey, Cayelan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2024-01</date><risdate>2024</risdate><volume>30</volume><issue>1</issue><spage>e17046</spage><epage>n/a</epage><pages>e17046-n/a</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.
Declining oxygen concentrations in the deep waters of lakes worldwide pose pressing environmental and societal challenges. Existing theory suggests that deep‐water anoxia (very low dissolved oxygen) could drive a positive feedback, begetting increasingly severe occurrences of anoxia in following summers. Here, we analyzed the anoxia begets anoxia (ABA) feedback across 656 widespread temperate lakes. We found support for all relationships, with the strength of the feedback varying with lake‐specific characteristics (e.g., size, residence time). Ultimately, the ABA feedback could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>38273535</pmid><doi>10.1111/gcb.17046</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6146-5838</orcidid><orcidid>https://orcid.org/0000-0001-9156-9486</orcidid><orcidid>https://orcid.org/0000-0003-2822-5917</orcidid><orcidid>https://orcid.org/0000-0002-4013-2281</orcidid><orcidid>https://orcid.org/0000-0001-8835-4476</orcidid><orcidid>https://orcid.org/0000-0001-7574-9161</orcidid><orcidid>https://orcid.org/0000-0001-9933-4542</orcidid><orcidid>https://orcid.org/0000-0002-1055-2461</orcidid><orcidid>https://orcid.org/0000-0002-1292-9381</orcidid><orcidid>https://orcid.org/0000-0001-6939-400X</orcidid><orcidid>https://orcid.org/0000-0002-9141-0325</orcidid><orcidid>https://orcid.org/0000-0003-3762-5939</orcidid><orcidid>https://orcid.org/0000-0002-0675-663X</orcidid><orcidid>https://orcid.org/0000-0002-8261-8087</orcidid><orcidid>https://orcid.org/0000-0003-2572-5457</orcidid><orcidid>https://orcid.org/0000-0002-8071-2977</orcidid><orcidid>https://orcid.org/0000-0003-2968-359X</orcidid><orcidid>https://orcid.org/0000-0002-2028-4843</orcidid><orcidid>https://orcid.org/0000-0001-5091-102X</orcidid><orcidid>https://orcid.org/0000-0002-6118-2149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2024-01, Vol.30 (1), p.e17046-n/a |
issn | 1354-1013 1365-2486 1365-2486 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_519022 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | air temperature Anoxia Anoxic conditions Anoxic sediments Anthropogenic factors Chlorophyll Chlorophyll a Climate change Climate effects Datasets Deoxygenation Dissolved oxygen Feedback Human influences hypolimnion lake Lakes Morphometry Nutrient release Oxygen Oxygen demand Oxygen requirement Phosphorus Phytoplankton Plankton Positive feedback residence time Sediments Summer |
title | Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anoxia%20begets%20anoxia:%20A%20positive%20feedback%20to%20the%20deoxygenation%20of%20temperate%20lakes&rft.jtitle=Global%20change%20biology&rft.au=Lewis,%20Abigail%20S.%20L.&rft.date=2024-01&rft.volume=30&rft.issue=1&rft.spage=e17046&rft.epage=n/a&rft.pages=e17046-n/a&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.17046&rft_dat=%3Cproquest_swepu%3E2918168833%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3856-de1d1bed02b072c9015f5009e7e0dbdd431d60eee2b131868db39acae0ee3e283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918168833&rft_id=info:pmid/38273535&rfr_iscdi=true |