Loading…

Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes

Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summ...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2024-01, Vol.30 (1), p.e17046-n/a
Main Authors: Lewis, Abigail S. L., Lau, Maximilian P., Jane, Stephen F., Rose, Kevin C., Be'eri‐Shlevin, Yaron, Burnet, Sarah H., Clayer, François, Feuchtmayr, Heidrun, Grossart, Hans‐Peter, Howard, Dexter W., Mariash, Heather, Delgado Martin, Jordi, North, Rebecca L., Oleksy, Isabella, Pilla, Rachel M., Smagula, Amy P., Sommaruga, Ruben, Steiner, Sara E., Verburg, Piet, Wain, Danielle, Weyhenmeyer, Gesa A., Carey, Cayelan C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3856-de1d1bed02b072c9015f5009e7e0dbdd431d60eee2b131868db39acae0ee3e283
container_end_page n/a
container_issue 1
container_start_page e17046
container_title Global change biology
container_volume 30
creator Lewis, Abigail S. L.
Lau, Maximilian P.
Jane, Stephen F.
Rose, Kevin C.
Be'eri‐Shlevin, Yaron
Burnet, Sarah H.
Clayer, François
Feuchtmayr, Heidrun
Grossart, Hans‐Peter
Howard, Dexter W.
Mariash, Heather
Delgado Martin, Jordi
North, Rebecca L.
Oleksy, Isabella
Pilla, Rachel M.
Smagula, Amy P.
Sommaruga, Ruben
Steiner, Sara E.
Verburg, Piet
Wain, Danielle
Weyhenmeyer, Gesa A.
Carey, Cayelan C.
description Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world. Declining oxygen concentrations in the deep waters of lakes worldwide pose pressing environmental and societal challenges. Existing theory suggests that deep‐water anoxia (very low dissolved oxygen) could drive a positive feedback, begetting increasingly severe occurrences of anoxia in following summers. Here, we analyzed the anoxia begets anoxia (ABA) feedback across 656 widespread temperate la
doi_str_mv 10.1111/gcb.17046
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_519022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918168833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3856-de1d1bed02b072c9015f5009e7e0dbdd431d60eee2b131868db39acae0ee3e283</originalsourceid><addsrcrecordid>eNp10ctO3DAUBmCrKip06KIvUFnqhkoN-Ni5OOyGKQWkkVClwtay45PBkIlDnBTm7fEQygIJb3zRp1_H-gn5CuwQ4jpaVeYQCpbmH8geiDxLeCrzj9tzlibAQOySzyHcMsYEZ_knsiskL0Qmsj3yZ976R6epwRUOgern2zGd084HN7h_SGtEa3R1RwdPhxukFv3jZoWtHpxvqa_pgOsOez0gbfQdhn2yU-sm4JeXfUaufp_-XZwny8uzi8V8mVRCZnliESwYtIwbVvCqZJDVGWMlFsissTYVYHOGiNyAAJlLa0SpK43xTSCXYkZ-TrnhAbvRqK53a91vlNdO_XLXc-X7lRpHlUHJOI_8YOJd7-9HDINau1Bh0-gW_RgUL6EsUpBpEen3N_TWj30bP7NVEnIphYjqx6Sq3ofQY_06ATC1rUXFWtRzLdF-e0kczRrtq_zfQwRHE3hwDW7eT1Jni5Mp8gl8XZXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918168833</pqid></control><display><type>article</type><title>Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lewis, Abigail S. L. ; Lau, Maximilian P. ; Jane, Stephen F. ; Rose, Kevin C. ; Be'eri‐Shlevin, Yaron ; Burnet, Sarah H. ; Clayer, François ; Feuchtmayr, Heidrun ; Grossart, Hans‐Peter ; Howard, Dexter W. ; Mariash, Heather ; Delgado Martin, Jordi ; North, Rebecca L. ; Oleksy, Isabella ; Pilla, Rachel M. ; Smagula, Amy P. ; Sommaruga, Ruben ; Steiner, Sara E. ; Verburg, Piet ; Wain, Danielle ; Weyhenmeyer, Gesa A. ; Carey, Cayelan C.</creator><creatorcontrib>Lewis, Abigail S. L. ; Lau, Maximilian P. ; Jane, Stephen F. ; Rose, Kevin C. ; Be'eri‐Shlevin, Yaron ; Burnet, Sarah H. ; Clayer, François ; Feuchtmayr, Heidrun ; Grossart, Hans‐Peter ; Howard, Dexter W. ; Mariash, Heather ; Delgado Martin, Jordi ; North, Rebecca L. ; Oleksy, Isabella ; Pilla, Rachel M. ; Smagula, Amy P. ; Sommaruga, Ruben ; Steiner, Sara E. ; Verburg, Piet ; Wain, Danielle ; Weyhenmeyer, Gesa A. ; Carey, Cayelan C.</creatorcontrib><description>Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world. Declining oxygen concentrations in the deep waters of lakes worldwide pose pressing environmental and societal challenges. Existing theory suggests that deep‐water anoxia (very low dissolved oxygen) could drive a positive feedback, begetting increasingly severe occurrences of anoxia in following summers. Here, we analyzed the anoxia begets anoxia (ABA) feedback across 656 widespread temperate lakes. We found support for all relationships, with the strength of the feedback varying with lake‐specific characteristics (e.g., size, residence time). Ultimately, the ABA feedback could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.17046</identifier><identifier>PMID: 38273535</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>air temperature ; Anoxia ; Anoxic conditions ; Anoxic sediments ; Anthropogenic factors ; Chlorophyll ; Chlorophyll a ; Climate change ; Climate effects ; Datasets ; Deoxygenation ; Dissolved oxygen ; Feedback ; Human influences ; hypolimnion ; lake ; Lakes ; Morphometry ; Nutrient release ; Oxygen ; Oxygen demand ; Oxygen requirement ; Phosphorus ; Phytoplankton ; Plankton ; Positive feedback ; residence time ; Sediments ; Summer</subject><ispartof>Global change biology, 2024-01, Vol.30 (1), p.e17046-n/a</ispartof><rights>2023 Oak Ridge National Laboratory and The Authors. published by John Wiley &amp; Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</rights><rights>2023 Oak Ridge National Laboratory and The Authors. Global Change Biology published by John Wiley &amp; Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3856-de1d1bed02b072c9015f5009e7e0dbdd431d60eee2b131868db39acae0ee3e283</cites><orcidid>0000-0001-6146-5838 ; 0000-0001-9156-9486 ; 0000-0003-2822-5917 ; 0000-0002-4013-2281 ; 0000-0001-8835-4476 ; 0000-0001-7574-9161 ; 0000-0001-9933-4542 ; 0000-0002-1055-2461 ; 0000-0002-1292-9381 ; 0000-0001-6939-400X ; 0000-0002-9141-0325 ; 0000-0003-3762-5939 ; 0000-0002-0675-663X ; 0000-0002-8261-8087 ; 0000-0003-2572-5457 ; 0000-0002-8071-2977 ; 0000-0003-2968-359X ; 0000-0002-2028-4843 ; 0000-0001-5091-102X ; 0000-0002-6118-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38273535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-519022$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Abigail S. L.</creatorcontrib><creatorcontrib>Lau, Maximilian P.</creatorcontrib><creatorcontrib>Jane, Stephen F.</creatorcontrib><creatorcontrib>Rose, Kevin C.</creatorcontrib><creatorcontrib>Be'eri‐Shlevin, Yaron</creatorcontrib><creatorcontrib>Burnet, Sarah H.</creatorcontrib><creatorcontrib>Clayer, François</creatorcontrib><creatorcontrib>Feuchtmayr, Heidrun</creatorcontrib><creatorcontrib>Grossart, Hans‐Peter</creatorcontrib><creatorcontrib>Howard, Dexter W.</creatorcontrib><creatorcontrib>Mariash, Heather</creatorcontrib><creatorcontrib>Delgado Martin, Jordi</creatorcontrib><creatorcontrib>North, Rebecca L.</creatorcontrib><creatorcontrib>Oleksy, Isabella</creatorcontrib><creatorcontrib>Pilla, Rachel M.</creatorcontrib><creatorcontrib>Smagula, Amy P.</creatorcontrib><creatorcontrib>Sommaruga, Ruben</creatorcontrib><creatorcontrib>Steiner, Sara E.</creatorcontrib><creatorcontrib>Verburg, Piet</creatorcontrib><creatorcontrib>Wain, Danielle</creatorcontrib><creatorcontrib>Weyhenmeyer, Gesa A.</creatorcontrib><creatorcontrib>Carey, Cayelan C.</creatorcontrib><title>Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world. Declining oxygen concentrations in the deep waters of lakes worldwide pose pressing environmental and societal challenges. Existing theory suggests that deep‐water anoxia (very low dissolved oxygen) could drive a positive feedback, begetting increasingly severe occurrences of anoxia in following summers. Here, we analyzed the anoxia begets anoxia (ABA) feedback across 656 widespread temperate lakes. We found support for all relationships, with the strength of the feedback varying with lake‐specific characteristics (e.g., size, residence time). Ultimately, the ABA feedback could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.</description><subject>air temperature</subject><subject>Anoxia</subject><subject>Anoxic conditions</subject><subject>Anoxic sediments</subject><subject>Anthropogenic factors</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Datasets</subject><subject>Deoxygenation</subject><subject>Dissolved oxygen</subject><subject>Feedback</subject><subject>Human influences</subject><subject>hypolimnion</subject><subject>lake</subject><subject>Lakes</subject><subject>Morphometry</subject><subject>Nutrient release</subject><subject>Oxygen</subject><subject>Oxygen demand</subject><subject>Oxygen requirement</subject><subject>Phosphorus</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Positive feedback</subject><subject>residence time</subject><subject>Sediments</subject><subject>Summer</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10ctO3DAUBmCrKip06KIvUFnqhkoN-Ni5OOyGKQWkkVClwtay45PBkIlDnBTm7fEQygIJb3zRp1_H-gn5CuwQ4jpaVeYQCpbmH8geiDxLeCrzj9tzlibAQOySzyHcMsYEZ_knsiskL0Qmsj3yZ976R6epwRUOgern2zGd084HN7h_SGtEa3R1RwdPhxukFv3jZoWtHpxvqa_pgOsOez0gbfQdhn2yU-sm4JeXfUaufp_-XZwny8uzi8V8mVRCZnliESwYtIwbVvCqZJDVGWMlFsissTYVYHOGiNyAAJlLa0SpK43xTSCXYkZ-TrnhAbvRqK53a91vlNdO_XLXc-X7lRpHlUHJOI_8YOJd7-9HDINau1Bh0-gW_RgUL6EsUpBpEen3N_TWj30bP7NVEnIphYjqx6Sq3ofQY_06ATC1rUXFWtRzLdF-e0kczRrtq_zfQwRHE3hwDW7eT1Jni5Mp8gl8XZXw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Lewis, Abigail S. L.</creator><creator>Lau, Maximilian P.</creator><creator>Jane, Stephen F.</creator><creator>Rose, Kevin C.</creator><creator>Be'eri‐Shlevin, Yaron</creator><creator>Burnet, Sarah H.</creator><creator>Clayer, François</creator><creator>Feuchtmayr, Heidrun</creator><creator>Grossart, Hans‐Peter</creator><creator>Howard, Dexter W.</creator><creator>Mariash, Heather</creator><creator>Delgado Martin, Jordi</creator><creator>North, Rebecca L.</creator><creator>Oleksy, Isabella</creator><creator>Pilla, Rachel M.</creator><creator>Smagula, Amy P.</creator><creator>Sommaruga, Ruben</creator><creator>Steiner, Sara E.</creator><creator>Verburg, Piet</creator><creator>Wain, Danielle</creator><creator>Weyhenmeyer, Gesa A.</creator><creator>Carey, Cayelan C.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-6146-5838</orcidid><orcidid>https://orcid.org/0000-0001-9156-9486</orcidid><orcidid>https://orcid.org/0000-0003-2822-5917</orcidid><orcidid>https://orcid.org/0000-0002-4013-2281</orcidid><orcidid>https://orcid.org/0000-0001-8835-4476</orcidid><orcidid>https://orcid.org/0000-0001-7574-9161</orcidid><orcidid>https://orcid.org/0000-0001-9933-4542</orcidid><orcidid>https://orcid.org/0000-0002-1055-2461</orcidid><orcidid>https://orcid.org/0000-0002-1292-9381</orcidid><orcidid>https://orcid.org/0000-0001-6939-400X</orcidid><orcidid>https://orcid.org/0000-0002-9141-0325</orcidid><orcidid>https://orcid.org/0000-0003-3762-5939</orcidid><orcidid>https://orcid.org/0000-0002-0675-663X</orcidid><orcidid>https://orcid.org/0000-0002-8261-8087</orcidid><orcidid>https://orcid.org/0000-0003-2572-5457</orcidid><orcidid>https://orcid.org/0000-0002-8071-2977</orcidid><orcidid>https://orcid.org/0000-0003-2968-359X</orcidid><orcidid>https://orcid.org/0000-0002-2028-4843</orcidid><orcidid>https://orcid.org/0000-0001-5091-102X</orcidid><orcidid>https://orcid.org/0000-0002-6118-2149</orcidid></search><sort><creationdate>202401</creationdate><title>Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes</title><author>Lewis, Abigail S. L. ; Lau, Maximilian P. ; Jane, Stephen F. ; Rose, Kevin C. ; Be'eri‐Shlevin, Yaron ; Burnet, Sarah H. ; Clayer, François ; Feuchtmayr, Heidrun ; Grossart, Hans‐Peter ; Howard, Dexter W. ; Mariash, Heather ; Delgado Martin, Jordi ; North, Rebecca L. ; Oleksy, Isabella ; Pilla, Rachel M. ; Smagula, Amy P. ; Sommaruga, Ruben ; Steiner, Sara E. ; Verburg, Piet ; Wain, Danielle ; Weyhenmeyer, Gesa A. ; Carey, Cayelan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3856-de1d1bed02b072c9015f5009e7e0dbdd431d60eee2b131868db39acae0ee3e283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>air temperature</topic><topic>Anoxia</topic><topic>Anoxic conditions</topic><topic>Anoxic sediments</topic><topic>Anthropogenic factors</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Datasets</topic><topic>Deoxygenation</topic><topic>Dissolved oxygen</topic><topic>Feedback</topic><topic>Human influences</topic><topic>hypolimnion</topic><topic>lake</topic><topic>Lakes</topic><topic>Morphometry</topic><topic>Nutrient release</topic><topic>Oxygen</topic><topic>Oxygen demand</topic><topic>Oxygen requirement</topic><topic>Phosphorus</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Positive feedback</topic><topic>residence time</topic><topic>Sediments</topic><topic>Summer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Abigail S. L.</creatorcontrib><creatorcontrib>Lau, Maximilian P.</creatorcontrib><creatorcontrib>Jane, Stephen F.</creatorcontrib><creatorcontrib>Rose, Kevin C.</creatorcontrib><creatorcontrib>Be'eri‐Shlevin, Yaron</creatorcontrib><creatorcontrib>Burnet, Sarah H.</creatorcontrib><creatorcontrib>Clayer, François</creatorcontrib><creatorcontrib>Feuchtmayr, Heidrun</creatorcontrib><creatorcontrib>Grossart, Hans‐Peter</creatorcontrib><creatorcontrib>Howard, Dexter W.</creatorcontrib><creatorcontrib>Mariash, Heather</creatorcontrib><creatorcontrib>Delgado Martin, Jordi</creatorcontrib><creatorcontrib>North, Rebecca L.</creatorcontrib><creatorcontrib>Oleksy, Isabella</creatorcontrib><creatorcontrib>Pilla, Rachel M.</creatorcontrib><creatorcontrib>Smagula, Amy P.</creatorcontrib><creatorcontrib>Sommaruga, Ruben</creatorcontrib><creatorcontrib>Steiner, Sara E.</creatorcontrib><creatorcontrib>Verburg, Piet</creatorcontrib><creatorcontrib>Wain, Danielle</creatorcontrib><creatorcontrib>Weyhenmeyer, Gesa A.</creatorcontrib><creatorcontrib>Carey, Cayelan C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Abigail S. L.</au><au>Lau, Maximilian P.</au><au>Jane, Stephen F.</au><au>Rose, Kevin C.</au><au>Be'eri‐Shlevin, Yaron</au><au>Burnet, Sarah H.</au><au>Clayer, François</au><au>Feuchtmayr, Heidrun</au><au>Grossart, Hans‐Peter</au><au>Howard, Dexter W.</au><au>Mariash, Heather</au><au>Delgado Martin, Jordi</au><au>North, Rebecca L.</au><au>Oleksy, Isabella</au><au>Pilla, Rachel M.</au><au>Smagula, Amy P.</au><au>Sommaruga, Ruben</au><au>Steiner, Sara E.</au><au>Verburg, Piet</au><au>Wain, Danielle</au><au>Weyhenmeyer, Gesa A.</au><au>Carey, Cayelan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2024-01</date><risdate>2024</risdate><volume>30</volume><issue>1</issue><spage>e17046</spage><epage>n/a</epage><pages>e17046-n/a</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world. Declining oxygen concentrations in the deep waters of lakes worldwide pose pressing environmental and societal challenges. Existing theory suggests that deep‐water anoxia (very low dissolved oxygen) could drive a positive feedback, begetting increasingly severe occurrences of anoxia in following summers. Here, we analyzed the anoxia begets anoxia (ABA) feedback across 656 widespread temperate lakes. We found support for all relationships, with the strength of the feedback varying with lake‐specific characteristics (e.g., size, residence time). Ultimately, the ABA feedback could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>38273535</pmid><doi>10.1111/gcb.17046</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6146-5838</orcidid><orcidid>https://orcid.org/0000-0001-9156-9486</orcidid><orcidid>https://orcid.org/0000-0003-2822-5917</orcidid><orcidid>https://orcid.org/0000-0002-4013-2281</orcidid><orcidid>https://orcid.org/0000-0001-8835-4476</orcidid><orcidid>https://orcid.org/0000-0001-7574-9161</orcidid><orcidid>https://orcid.org/0000-0001-9933-4542</orcidid><orcidid>https://orcid.org/0000-0002-1055-2461</orcidid><orcidid>https://orcid.org/0000-0002-1292-9381</orcidid><orcidid>https://orcid.org/0000-0001-6939-400X</orcidid><orcidid>https://orcid.org/0000-0002-9141-0325</orcidid><orcidid>https://orcid.org/0000-0003-3762-5939</orcidid><orcidid>https://orcid.org/0000-0002-0675-663X</orcidid><orcidid>https://orcid.org/0000-0002-8261-8087</orcidid><orcidid>https://orcid.org/0000-0003-2572-5457</orcidid><orcidid>https://orcid.org/0000-0002-8071-2977</orcidid><orcidid>https://orcid.org/0000-0003-2968-359X</orcidid><orcidid>https://orcid.org/0000-0002-2028-4843</orcidid><orcidid>https://orcid.org/0000-0001-5091-102X</orcidid><orcidid>https://orcid.org/0000-0002-6118-2149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2024-01, Vol.30 (1), p.e17046-n/a
issn 1354-1013
1365-2486
1365-2486
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_519022
source Wiley-Blackwell Read & Publish Collection
subjects air temperature
Anoxia
Anoxic conditions
Anoxic sediments
Anthropogenic factors
Chlorophyll
Chlorophyll a
Climate change
Climate effects
Datasets
Deoxygenation
Dissolved oxygen
Feedback
Human influences
hypolimnion
lake
Lakes
Morphometry
Nutrient release
Oxygen
Oxygen demand
Oxygen requirement
Phosphorus
Phytoplankton
Plankton
Positive feedback
residence time
Sediments
Summer
title Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anoxia%20begets%20anoxia:%20A%20positive%20feedback%20to%20the%20deoxygenation%20of%20temperate%20lakes&rft.jtitle=Global%20change%20biology&rft.au=Lewis,%20Abigail%20S.%20L.&rft.date=2024-01&rft.volume=30&rft.issue=1&rft.spage=e17046&rft.epage=n/a&rft.pages=e17046-n/a&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.17046&rft_dat=%3Cproquest_swepu%3E2918168833%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3856-de1d1bed02b072c9015f5009e7e0dbdd431d60eee2b131868db39acae0ee3e283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918168833&rft_id=info:pmid/38273535&rfr_iscdi=true