Loading…
Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes
Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in result...
Saved in:
Published in: | ACS applied energy materials 2024-05, Vol.7 (10), p.4609-4619 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a306t-56ad2d27260fc82459e41c8123c8a75351142ce3a5f5fe4ce54e249e7549df723 |
container_end_page | 4619 |
container_issue | 10 |
container_start_page | 4609 |
container_title | ACS applied energy materials |
container_volume | 7 |
creator | Nkosi, Funeka P. Cuevas, Ignacio Valvo, Mario Mindemark, Jonas Mahun, Andrii Abbrent, Sabina Brus, Jiří Kobera, Libor Edström, Kristina |
description | Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting polymer-in-ceramic solid-state electrolyte systems. Here, LATP constitutes an advantageous ceramic Li-ion conductor with fair ionic conductivity that does not immediately suffer from limitations arising from interface issues due to the detrimental formation of surface species (e.g., Li2CO3) in contact with air and/or surrounding polymers. The Li-ion transport in all these composite electrolytes is found to follow a slow-motion regime in the polymer matrix, regardless of the nature of the polymer used. Interestingly, the weakly Li-coordinating polyester-based polymers PCL and P(CL-co-TMC) exhibit an exchange of Li+ ions between the polymer and ceramic phases and high Li-ion transference numbers compared to the polyether PEO matrix, which has strong Li–polymer coordination. LATP particle agglomeration is nevertheless observed in all the composite electrolytes, and this most likely represents a dominating cause for the lower Li-ion conductivity values of these composites when compared to those of their solid polymer electrolyte (SPE) counterparts. These findings add another step toward the development of functional composite electrolytes for all-solid-state batteries. |
doi_str_mv | 10.1021/acsaem.4c00701 |
format | article |
fullrecord | <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_531308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b604674283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a306t-56ad2d27260fc82459e41c8123c8a75351142ce3a5f5fe4ce54e249e7549df723</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOOaunnsWO5M06Y_jqFMHYxPcvMaYvs6MNRlJqvS_t9IhXjy9L4_P98H7IHRN8JRgSu6k8hKaKVMYZ5icoRHlGYtxkdLzP_kSTbzfY4xJQVJaFCP0tjUVOB-kqbTZRUsdPnTbxAtrotKaqlVBf-rQRdpEq9nLolyv4k13hOjZHroGXKxNXIKTjVY93xyt1wGi-QFUcD0RwF-hi1oePExOc4y2D_NN-RQv14-LcraMZYLTEPNUVrSiGU1xrXLKeAGMqJzQROUy4wknhFEFieQ1r4Ep4AwoKyDjrKjqjCZjdDvc9V9wbN_F0elGuk5YqcW9fp0J63aibQVPSILzHp8OuHLWewf1b4Fg8WNUDEbFyWhfuBkK_V7sbetM_81_8Ddqo3jH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Nkosi, Funeka P. ; Cuevas, Ignacio ; Valvo, Mario ; Mindemark, Jonas ; Mahun, Andrii ; Abbrent, Sabina ; Brus, Jiří ; Kobera, Libor ; Edström, Kristina</creator><creatorcontrib>Nkosi, Funeka P. ; Cuevas, Ignacio ; Valvo, Mario ; Mindemark, Jonas ; Mahun, Andrii ; Abbrent, Sabina ; Brus, Jiří ; Kobera, Libor ; Edström, Kristina</creatorcontrib><description>Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting polymer-in-ceramic solid-state electrolyte systems. Here, LATP constitutes an advantageous ceramic Li-ion conductor with fair ionic conductivity that does not immediately suffer from limitations arising from interface issues due to the detrimental formation of surface species (e.g., Li2CO3) in contact with air and/or surrounding polymers. The Li-ion transport in all these composite electrolytes is found to follow a slow-motion regime in the polymer matrix, regardless of the nature of the polymer used. Interestingly, the weakly Li-coordinating polyester-based polymers PCL and P(CL-co-TMC) exhibit an exchange of Li+ ions between the polymer and ceramic phases and high Li-ion transference numbers compared to the polyether PEO matrix, which has strong Li–polymer coordination. LATP particle agglomeration is nevertheless observed in all the composite electrolytes, and this most likely represents a dominating cause for the lower Li-ion conductivity values of these composites when compared to those of their solid polymer electrolyte (SPE) counterparts. These findings add another step toward the development of functional composite electrolytes for all-solid-state batteries.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.4c00701</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>All-solid-state batteries ; Li1+xAlxTi2−x(PO4)3 ; Polyether and polyester polymers Li-ion coordination properties Interfacial Li-ion transport</subject><ispartof>ACS applied energy materials, 2024-05, Vol.7 (10), p.4609-4619</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a306t-56ad2d27260fc82459e41c8123c8a75351142ce3a5f5fe4ce54e249e7549df723</cites><orcidid>0000-0003-2692-612X ; 0000-0002-8826-948X ; 0000-0003-1057-2910 ; 0000-0003-4228-4059 ; 0000-0002-9862-7375 ; 0000-0002-0069-8707 ; 0000-0003-4440-2952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-531308$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Nkosi, Funeka P.</creatorcontrib><creatorcontrib>Cuevas, Ignacio</creatorcontrib><creatorcontrib>Valvo, Mario</creatorcontrib><creatorcontrib>Mindemark, Jonas</creatorcontrib><creatorcontrib>Mahun, Andrii</creatorcontrib><creatorcontrib>Abbrent, Sabina</creatorcontrib><creatorcontrib>Brus, Jiří</creatorcontrib><creatorcontrib>Kobera, Libor</creatorcontrib><creatorcontrib>Edström, Kristina</creatorcontrib><title>Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting polymer-in-ceramic solid-state electrolyte systems. Here, LATP constitutes an advantageous ceramic Li-ion conductor with fair ionic conductivity that does not immediately suffer from limitations arising from interface issues due to the detrimental formation of surface species (e.g., Li2CO3) in contact with air and/or surrounding polymers. The Li-ion transport in all these composite electrolytes is found to follow a slow-motion regime in the polymer matrix, regardless of the nature of the polymer used. Interestingly, the weakly Li-coordinating polyester-based polymers PCL and P(CL-co-TMC) exhibit an exchange of Li+ ions between the polymer and ceramic phases and high Li-ion transference numbers compared to the polyether PEO matrix, which has strong Li–polymer coordination. LATP particle agglomeration is nevertheless observed in all the composite electrolytes, and this most likely represents a dominating cause for the lower Li-ion conductivity values of these composites when compared to those of their solid polymer electrolyte (SPE) counterparts. These findings add another step toward the development of functional composite electrolytes for all-solid-state batteries.</description><subject>All-solid-state batteries</subject><subject>Li1+xAlxTi2−x(PO4)3</subject><subject>Polyether and polyester polymers Li-ion coordination properties Interfacial Li-ion transport</subject><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOOaunnsWO5M06Y_jqFMHYxPcvMaYvs6MNRlJqvS_t9IhXjy9L4_P98H7IHRN8JRgSu6k8hKaKVMYZ5icoRHlGYtxkdLzP_kSTbzfY4xJQVJaFCP0tjUVOB-kqbTZRUsdPnTbxAtrotKaqlVBf-rQRdpEq9nLolyv4k13hOjZHroGXKxNXIKTjVY93xyt1wGi-QFUcD0RwF-hi1oePExOc4y2D_NN-RQv14-LcraMZYLTEPNUVrSiGU1xrXLKeAGMqJzQROUy4wknhFEFieQ1r4Ep4AwoKyDjrKjqjCZjdDvc9V9wbN_F0elGuk5YqcW9fp0J63aibQVPSILzHp8OuHLWewf1b4Fg8WNUDEbFyWhfuBkK_V7sbetM_81_8Ddqo3jH</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Nkosi, Funeka P.</creator><creator>Cuevas, Ignacio</creator><creator>Valvo, Mario</creator><creator>Mindemark, Jonas</creator><creator>Mahun, Andrii</creator><creator>Abbrent, Sabina</creator><creator>Brus, Jiří</creator><creator>Kobera, Libor</creator><creator>Edström, Kristina</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2692-612X</orcidid><orcidid>https://orcid.org/0000-0002-8826-948X</orcidid><orcidid>https://orcid.org/0000-0003-1057-2910</orcidid><orcidid>https://orcid.org/0000-0003-4228-4059</orcidid><orcidid>https://orcid.org/0000-0002-9862-7375</orcidid><orcidid>https://orcid.org/0000-0002-0069-8707</orcidid><orcidid>https://orcid.org/0000-0003-4440-2952</orcidid></search><sort><creationdate>20240527</creationdate><title>Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes</title><author>Nkosi, Funeka P. ; Cuevas, Ignacio ; Valvo, Mario ; Mindemark, Jonas ; Mahun, Andrii ; Abbrent, Sabina ; Brus, Jiří ; Kobera, Libor ; Edström, Kristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a306t-56ad2d27260fc82459e41c8123c8a75351142ce3a5f5fe4ce54e249e7549df723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>All-solid-state batteries</topic><topic>Li1+xAlxTi2−x(PO4)3</topic><topic>Polyether and polyester polymers Li-ion coordination properties Interfacial Li-ion transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nkosi, Funeka P.</creatorcontrib><creatorcontrib>Cuevas, Ignacio</creatorcontrib><creatorcontrib>Valvo, Mario</creatorcontrib><creatorcontrib>Mindemark, Jonas</creatorcontrib><creatorcontrib>Mahun, Andrii</creatorcontrib><creatorcontrib>Abbrent, Sabina</creatorcontrib><creatorcontrib>Brus, Jiří</creatorcontrib><creatorcontrib>Kobera, Libor</creatorcontrib><creatorcontrib>Edström, Kristina</creatorcontrib><collection>CrossRef</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nkosi, Funeka P.</au><au>Cuevas, Ignacio</au><au>Valvo, Mario</au><au>Mindemark, Jonas</au><au>Mahun, Andrii</au><au>Abbrent, Sabina</au><au>Brus, Jiří</au><au>Kobera, Libor</au><au>Edström, Kristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-05-27</date><risdate>2024</risdate><volume>7</volume><issue>10</issue><spage>4609</spage><epage>4619</epage><pages>4609-4619</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting polymer-in-ceramic solid-state electrolyte systems. Here, LATP constitutes an advantageous ceramic Li-ion conductor with fair ionic conductivity that does not immediately suffer from limitations arising from interface issues due to the detrimental formation of surface species (e.g., Li2CO3) in contact with air and/or surrounding polymers. The Li-ion transport in all these composite electrolytes is found to follow a slow-motion regime in the polymer matrix, regardless of the nature of the polymer used. Interestingly, the weakly Li-coordinating polyester-based polymers PCL and P(CL-co-TMC) exhibit an exchange of Li+ ions between the polymer and ceramic phases and high Li-ion transference numbers compared to the polyether PEO matrix, which has strong Li–polymer coordination. LATP particle agglomeration is nevertheless observed in all the composite electrolytes, and this most likely represents a dominating cause for the lower Li-ion conductivity values of these composites when compared to those of their solid polymer electrolyte (SPE) counterparts. These findings add another step toward the development of functional composite electrolytes for all-solid-state batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.4c00701</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2692-612X</orcidid><orcidid>https://orcid.org/0000-0002-8826-948X</orcidid><orcidid>https://orcid.org/0000-0003-1057-2910</orcidid><orcidid>https://orcid.org/0000-0003-4228-4059</orcidid><orcidid>https://orcid.org/0000-0002-9862-7375</orcidid><orcidid>https://orcid.org/0000-0002-0069-8707</orcidid><orcidid>https://orcid.org/0000-0003-4440-2952</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2024-05, Vol.7 (10), p.4609-4619 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_531308 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | All-solid-state batteries Li1+xAlxTi2−x(PO4)3 Polyether and polyester polymers Li-ion coordination properties Interfacial Li-ion transport |
title | Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Lithium-Ion%20Conductivity%20in%20NASICON-Type%20Polymer-in-Ceramic%20Composite%20Electrolytes&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Nkosi,%20Funeka%20P.&rft.date=2024-05-27&rft.volume=7&rft.issue=10&rft.spage=4609&rft.epage=4619&rft.pages=4609-4619&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.4c00701&rft_dat=%3Cacs_swepu%3Eb604674283%3C/acs_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a306t-56ad2d27260fc82459e41c8123c8a75351142ce3a5f5fe4ce54e249e7549df723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |