Loading…

Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes

Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P­(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in result...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied energy materials 2024-05, Vol.7 (10), p.4609-4619
Main Authors: Nkosi, Funeka P., Cuevas, Ignacio, Valvo, Mario, Mindemark, Jonas, Mahun, Andrii, Abbrent, Sabina, Brus, Jiří, Kobera, Libor, Edström, Kristina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a306t-56ad2d27260fc82459e41c8123c8a75351142ce3a5f5fe4ce54e249e7549df723
container_end_page 4619
container_issue 10
container_start_page 4609
container_title ACS applied energy materials
container_volume 7
creator Nkosi, Funeka P.
Cuevas, Ignacio
Valvo, Mario
Mindemark, Jonas
Mahun, Andrii
Abbrent, Sabina
Brus, Jiří
Kobera, Libor
Edström, Kristina
description Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P­(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting polymer-in-ceramic solid-state electrolyte systems. Here, LATP constitutes an advantageous ceramic Li-ion conductor with fair ionic conductivity that does not immediately suffer from limitations arising from interface issues due to the detrimental formation of surface species (e.g., Li2CO3) in contact with air and/or surrounding polymers. The Li-ion transport in all these composite electrolytes is found to follow a slow-motion regime in the polymer matrix, regardless of the nature of the polymer used. Interestingly, the weakly Li-coordinating polyester-based polymers PCL and P­(CL-co-TMC) exhibit an exchange of Li+ ions between the polymer and ceramic phases and high Li-ion transference numbers compared to the polyether PEO matrix, which has strong Li–polymer coordination. LATP particle agglomeration is nevertheless observed in all the composite electrolytes, and this most likely represents a dominating cause for the lower Li-ion conductivity values of these composites when compared to those of their solid polymer electrolyte (SPE) counterparts. These findings add another step toward the development of functional composite electrolytes for all-solid-state batteries.
doi_str_mv 10.1021/acsaem.4c00701
format article
fullrecord <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_531308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b604674283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a306t-56ad2d27260fc82459e41c8123c8a75351142ce3a5f5fe4ce54e249e7549df723</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOOaunnsWO5M06Y_jqFMHYxPcvMaYvs6MNRlJqvS_t9IhXjy9L4_P98H7IHRN8JRgSu6k8hKaKVMYZ5icoRHlGYtxkdLzP_kSTbzfY4xJQVJaFCP0tjUVOB-kqbTZRUsdPnTbxAtrotKaqlVBf-rQRdpEq9nLolyv4k13hOjZHroGXKxNXIKTjVY93xyt1wGi-QFUcD0RwF-hi1oePExOc4y2D_NN-RQv14-LcraMZYLTEPNUVrSiGU1xrXLKeAGMqJzQROUy4wknhFEFieQ1r4Ep4AwoKyDjrKjqjCZjdDvc9V9wbN_F0elGuk5YqcW9fp0J63aibQVPSILzHp8OuHLWewf1b4Fg8WNUDEbFyWhfuBkK_V7sbetM_81_8Ddqo3jH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Nkosi, Funeka P. ; Cuevas, Ignacio ; Valvo, Mario ; Mindemark, Jonas ; Mahun, Andrii ; Abbrent, Sabina ; Brus, Jiří ; Kobera, Libor ; Edström, Kristina</creator><creatorcontrib>Nkosi, Funeka P. ; Cuevas, Ignacio ; Valvo, Mario ; Mindemark, Jonas ; Mahun, Andrii ; Abbrent, Sabina ; Brus, Jiří ; Kobera, Libor ; Edström, Kristina</creatorcontrib><description>Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P­(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting polymer-in-ceramic solid-state electrolyte systems. Here, LATP constitutes an advantageous ceramic Li-ion conductor with fair ionic conductivity that does not immediately suffer from limitations arising from interface issues due to the detrimental formation of surface species (e.g., Li2CO3) in contact with air and/or surrounding polymers. The Li-ion transport in all these composite electrolytes is found to follow a slow-motion regime in the polymer matrix, regardless of the nature of the polymer used. Interestingly, the weakly Li-coordinating polyester-based polymers PCL and P­(CL-co-TMC) exhibit an exchange of Li+ ions between the polymer and ceramic phases and high Li-ion transference numbers compared to the polyether PEO matrix, which has strong Li–polymer coordination. LATP particle agglomeration is nevertheless observed in all the composite electrolytes, and this most likely represents a dominating cause for the lower Li-ion conductivity values of these composites when compared to those of their solid polymer electrolyte (SPE) counterparts. These findings add another step toward the development of functional composite electrolytes for all-solid-state batteries.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.4c00701</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>All-solid-state batteries ; Li1+xAlxTi2−x(PO4)3 ; Polyether and polyester polymers Li-ion coordination properties Interfacial Li-ion transport</subject><ispartof>ACS applied energy materials, 2024-05, Vol.7 (10), p.4609-4619</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a306t-56ad2d27260fc82459e41c8123c8a75351142ce3a5f5fe4ce54e249e7549df723</cites><orcidid>0000-0003-2692-612X ; 0000-0002-8826-948X ; 0000-0003-1057-2910 ; 0000-0003-4228-4059 ; 0000-0002-9862-7375 ; 0000-0002-0069-8707 ; 0000-0003-4440-2952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-531308$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Nkosi, Funeka P.</creatorcontrib><creatorcontrib>Cuevas, Ignacio</creatorcontrib><creatorcontrib>Valvo, Mario</creatorcontrib><creatorcontrib>Mindemark, Jonas</creatorcontrib><creatorcontrib>Mahun, Andrii</creatorcontrib><creatorcontrib>Abbrent, Sabina</creatorcontrib><creatorcontrib>Brus, Jiří</creatorcontrib><creatorcontrib>Kobera, Libor</creatorcontrib><creatorcontrib>Edström, Kristina</creatorcontrib><title>Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P­(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting polymer-in-ceramic solid-state electrolyte systems. Here, LATP constitutes an advantageous ceramic Li-ion conductor with fair ionic conductivity that does not immediately suffer from limitations arising from interface issues due to the detrimental formation of surface species (e.g., Li2CO3) in contact with air and/or surrounding polymers. The Li-ion transport in all these composite electrolytes is found to follow a slow-motion regime in the polymer matrix, regardless of the nature of the polymer used. Interestingly, the weakly Li-coordinating polyester-based polymers PCL and P­(CL-co-TMC) exhibit an exchange of Li+ ions between the polymer and ceramic phases and high Li-ion transference numbers compared to the polyether PEO matrix, which has strong Li–polymer coordination. LATP particle agglomeration is nevertheless observed in all the composite electrolytes, and this most likely represents a dominating cause for the lower Li-ion conductivity values of these composites when compared to those of their solid polymer electrolyte (SPE) counterparts. These findings add another step toward the development of functional composite electrolytes for all-solid-state batteries.</description><subject>All-solid-state batteries</subject><subject>Li1+xAlxTi2−x(PO4)3</subject><subject>Polyether and polyester polymers Li-ion coordination properties Interfacial Li-ion transport</subject><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOOaunnsWO5M06Y_jqFMHYxPcvMaYvs6MNRlJqvS_t9IhXjy9L4_P98H7IHRN8JRgSu6k8hKaKVMYZ5icoRHlGYtxkdLzP_kSTbzfY4xJQVJaFCP0tjUVOB-kqbTZRUsdPnTbxAtrotKaqlVBf-rQRdpEq9nLolyv4k13hOjZHroGXKxNXIKTjVY93xyt1wGi-QFUcD0RwF-hi1oePExOc4y2D_NN-RQv14-LcraMZYLTEPNUVrSiGU1xrXLKeAGMqJzQROUy4wknhFEFieQ1r4Ep4AwoKyDjrKjqjCZjdDvc9V9wbN_F0elGuk5YqcW9fp0J63aibQVPSILzHp8OuHLWewf1b4Fg8WNUDEbFyWhfuBkK_V7sbetM_81_8Ddqo3jH</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Nkosi, Funeka P.</creator><creator>Cuevas, Ignacio</creator><creator>Valvo, Mario</creator><creator>Mindemark, Jonas</creator><creator>Mahun, Andrii</creator><creator>Abbrent, Sabina</creator><creator>Brus, Jiří</creator><creator>Kobera, Libor</creator><creator>Edström, Kristina</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2692-612X</orcidid><orcidid>https://orcid.org/0000-0002-8826-948X</orcidid><orcidid>https://orcid.org/0000-0003-1057-2910</orcidid><orcidid>https://orcid.org/0000-0003-4228-4059</orcidid><orcidid>https://orcid.org/0000-0002-9862-7375</orcidid><orcidid>https://orcid.org/0000-0002-0069-8707</orcidid><orcidid>https://orcid.org/0000-0003-4440-2952</orcidid></search><sort><creationdate>20240527</creationdate><title>Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes</title><author>Nkosi, Funeka P. ; Cuevas, Ignacio ; Valvo, Mario ; Mindemark, Jonas ; Mahun, Andrii ; Abbrent, Sabina ; Brus, Jiří ; Kobera, Libor ; Edström, Kristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a306t-56ad2d27260fc82459e41c8123c8a75351142ce3a5f5fe4ce54e249e7549df723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>All-solid-state batteries</topic><topic>Li1+xAlxTi2−x(PO4)3</topic><topic>Polyether and polyester polymers Li-ion coordination properties Interfacial Li-ion transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nkosi, Funeka P.</creatorcontrib><creatorcontrib>Cuevas, Ignacio</creatorcontrib><creatorcontrib>Valvo, Mario</creatorcontrib><creatorcontrib>Mindemark, Jonas</creatorcontrib><creatorcontrib>Mahun, Andrii</creatorcontrib><creatorcontrib>Abbrent, Sabina</creatorcontrib><creatorcontrib>Brus, Jiří</creatorcontrib><creatorcontrib>Kobera, Libor</creatorcontrib><creatorcontrib>Edström, Kristina</creatorcontrib><collection>CrossRef</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nkosi, Funeka P.</au><au>Cuevas, Ignacio</au><au>Valvo, Mario</au><au>Mindemark, Jonas</au><au>Mahun, Andrii</au><au>Abbrent, Sabina</au><au>Brus, Jiří</au><au>Kobera, Libor</au><au>Edström, Kristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-05-27</date><risdate>2024</risdate><volume>7</volume><issue>10</issue><spage>4609</spage><epage>4619</epage><pages>4609-4619</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Composite electrolytes comprising distinctive polyether (PEO) or polyester (PCL, P­(CL-co-TMC)) polymers in combination with a high loading of Li1.4Al0.4Ti1.6(PO4)3 NASICON-type ceramic powders (LATP, 70 wt %) are investigated to gain insights into the limitations of their ion conductivity in resulting polymer-in-ceramic solid-state electrolyte systems. Here, LATP constitutes an advantageous ceramic Li-ion conductor with fair ionic conductivity that does not immediately suffer from limitations arising from interface issues due to the detrimental formation of surface species (e.g., Li2CO3) in contact with air and/or surrounding polymers. The Li-ion transport in all these composite electrolytes is found to follow a slow-motion regime in the polymer matrix, regardless of the nature of the polymer used. Interestingly, the weakly Li-coordinating polyester-based polymers PCL and P­(CL-co-TMC) exhibit an exchange of Li+ ions between the polymer and ceramic phases and high Li-ion transference numbers compared to the polyether PEO matrix, which has strong Li–polymer coordination. LATP particle agglomeration is nevertheless observed in all the composite electrolytes, and this most likely represents a dominating cause for the lower Li-ion conductivity values of these composites when compared to those of their solid polymer electrolyte (SPE) counterparts. These findings add another step toward the development of functional composite electrolytes for all-solid-state batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.4c00701</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2692-612X</orcidid><orcidid>https://orcid.org/0000-0002-8826-948X</orcidid><orcidid>https://orcid.org/0000-0003-1057-2910</orcidid><orcidid>https://orcid.org/0000-0003-4228-4059</orcidid><orcidid>https://orcid.org/0000-0002-9862-7375</orcidid><orcidid>https://orcid.org/0000-0002-0069-8707</orcidid><orcidid>https://orcid.org/0000-0003-4440-2952</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-05, Vol.7 (10), p.4609-4619
issn 2574-0962
2574-0962
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_531308
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects All-solid-state batteries
Li1+xAlxTi2−x(PO4)3
Polyether and polyester polymers Li-ion coordination properties Interfacial Li-ion transport
title Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Lithium-Ion%20Conductivity%20in%20NASICON-Type%20Polymer-in-Ceramic%20Composite%20Electrolytes&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Nkosi,%20Funeka%20P.&rft.date=2024-05-27&rft.volume=7&rft.issue=10&rft.spage=4609&rft.epage=4619&rft.pages=4609-4619&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.4c00701&rft_dat=%3Cacs_swepu%3Eb604674283%3C/acs_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a306t-56ad2d27260fc82459e41c8123c8a75351142ce3a5f5fe4ce54e249e7549df723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true