Loading…

Machine Learning Based Prediction of Imminent ICP Insults During Neurocritical Care of Traumatic Brain Injury

In neurointensive care, increased intracranial pressure (ICP) is a feared secondary brain insult in traumatic brain injury (TBI). A system that predicts ICP insults before they emerge may facilitate early optimization of the physiology, which may in turn lead to stopping the predicted ICP insult fro...

Full description

Saved in:
Bibliographic Details
Published in:Neurocritical care 2024-09
Main Authors: Galos, Peter, Hult, Ludvig, Zachariah, Dave, Lewén, Anders, Hånell, Anders, Howells, Timothy, Schön, Thomas B, Enblad, Per
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In neurointensive care, increased intracranial pressure (ICP) is a feared secondary brain insult in traumatic brain injury (TBI). A system that predicts ICP insults before they emerge may facilitate early optimization of the physiology, which may in turn lead to stopping the predicted ICP insult from occurring. The aim of this study was to evaluate the performance of different artificial intelligence models in predicting the risk of ICP insults. The models were trained to predict risk of ICP insults starting within 30 min, using the Uppsala high frequency TBI dataset. A restricted dataset consisting of only monitoring data were used, and an unrestricted dataset using monitoring data as well as clinical data, demographic data, and radiological evaluations was used. Four different model classes were compared: Gaussian process regression, logistic regression, random forest classifier, and Extreme Gradient Boosted decision trees (XGBoost). Six hundred and two patients with TBI were included (total monitoring 138,411 h). On the task of predicting upcoming ICP insults, the Gaussian process regression model performed similarly on the Uppsala high frequency TBI dataset (sensitivity 93.2%, specificity 93.9%, area under the receiver operating characteristic curve [AUROC] 98.3%), as in earlier smaller studies. Using a more flexible model (XGBoost) resulted in a comparable performance (sensitivity 93.8%, specificity 94.6%, AUROC 98.7%). Adding more clinical variables and features further improved the performance of the models slightly (XGBoost: sensitivity 94.1%, specificity of 94.6%, AUROC 98.8%). Artificial intelligence models have potential to become valuable tools for predicting ICP insults in advance during neurointensive care. The fact that common off-the-shelf models, such as XGBoost, performed well in predicting ICP insults opens new possibilities that can lead to faster advances in the field and earlier clinical implementations.
ISSN:1541-6933
1556-0961
1556-0961
DOI:10.1007/s12028-024-02119-7