Loading…

Reduced expression of central innate defense molecules in pancreatic biopsies from subjects with Type  1 diabetes

Aims/Hypothesis Defensins play a crucial role in the innate immune system's first defense against microbial threats. However, little is known about the defensin system in the pancreas, especially in relation to Type 1 diabetes. We explore the expression of defensins in different disease stages...

Full description

Saved in:
Bibliographic Details
Published in:Acta diabetologica 2024, Vol.61 (9), p.1117-1127
Main Authors: Tegehall, Angie, Ingvast, Sofie, Krogvold, Lars, Dahl-Jørgensen, Knut, Korsgren, Olle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aims/Hypothesis Defensins play a crucial role in the innate immune system's first defense against microbial threats. However, little is known about the defensin system in the pancreas, especially in relation to Type 1 diabetes. We explore the expression of defensins in different disease stages of Type 1 diabetes and correlated obtained findings to the degree of inflammation, providing new insights into the disease and the innate immune system. Material and methods Pancreases from non-diabetic human organ donors of different age groups and donors with Type 1 diabetes with different disease duration were examined. Sections from head, body and tail of the pancreas were stained for eight different defensins and for immune cells; CD3+, CD45+, CD68+ and NES+ (granulocytes). Results In non-diabetic adult controls the level of expression for defensins Beta-1,Alpha-1, Cathelicidin and REG3A correlated with the level of inflammation. In contrast, individuals with Type  1 diabetes exhibit a reduction or absence of several central defensins regardless of the level of inflammation in their pancreas. The expression of Cathelicidin is present in neutrophils and macrophages but not in T-cells in subjects with Type 1 diabetes. Conclusions Obtained findings suggest a pancreatic dysfunction in the innate immune system and the bridging to the adaptive system in Type 1 diabetes. Further studies on the role of the local innate immune system in Type 1 diabetes is needed.
ISSN:1432-5233
0940-5429
1432-5233
DOI:10.1007/s00592-024-02286-1