Loading…
Pesticide-induced transgenerational alterations of genome-wide DNA methylation patterns in the pancreas of Xenopus tropicalis correlate with metabolic phenotypes
The unsustainable use of manmade chemicals poses significant threats to biodiversity and human health. Emerging evidence highlights the potential of certain chemicals to cause transgenerational impacts on metabolic health. Here, we investigate male transmitted epigenetic transgenerational effects of...
Saved in:
Published in: | Journal of hazardous materials 2024-10, Vol.478, p.135455, Article 135455 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unsustainable use of manmade chemicals poses significant threats to biodiversity and human health. Emerging evidence highlights the potential of certain chemicals to cause transgenerational impacts on metabolic health. Here, we investigate male transmitted epigenetic transgenerational effects of the anti-androgenic herbicide linuron in the pancreas of Xenopus tropicalis frogs, and their association with metabolic phenotypes. Reduced representation bisulfite sequencing (RRBS) was used to assess genome-wide DNA methylation patterns in the pancreas of adult male F2 generation ancestrally exposed to environmentally relevant linuron levels (44 ± 4.7 μg/L). We identified 1117 differentially methylated regions (DMRs) distributed across the X. tropicalis genome, revealing potential regulatory mechanisms underlying metabolic disturbances. DMRs were identified in genes crucial for pancreatic function, including calcium signalling (clstn2, cacna1d and cadps2), genes associated with type 2 diabetes (tcf7l2 and adcy5) and a biomarker for pancreatic ductal adenocarcinoma (plec). Correlation analysis revealed associations between DNA methylation levels in these genes and metabolic phenotypes, indicating epigenetic regulation of glucose metabolism. Moreover, differential methylation in genes related to histone modifications suggests alterations in the epigenetic machinery. These findings underscore the long-term consequences of environmental contamination on pancreatic function and raise concerns about the health risks associated with transgenerational effects of pesticides.
[Display omitted]
•Linuron exposure caused transgenerational epigenetic changes in frog pancreas.•1117 Differentially Methylated Regions (DMRs) in F2 male X. tropicalis.•DMRs in genes related to F2 phenotypical metabolic changes.•Levels of methylation in relevant genes were correlated with plasma glucose levels.•Methylation of T2D markers tcf7l2 and adcy5 correlated to glucose metabolism changes. |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.135455 |