Loading…

Aqueous two-phase systems as a formulation concept for spray-dried protein

This study investigates to what extent an aqueous two-phase system (ATPS) can encapsulate and protect the secondary structure of a protein during spray drying. The ATPSs contained polyvinyl alcohol (PVA) and dextran solutions, in different proportions. A model protein, bovine serum albumin (BSA) and...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics 2005-04, Vol.294 (1), p.73-87
Main Authors: Elversson, Jessica, Millqvist-Fureby, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates to what extent an aqueous two-phase system (ATPS) can encapsulate and protect the secondary structure of a protein during spray drying. The ATPSs contained polyvinyl alcohol (PVA) and dextran solutions, in different proportions. A model protein, bovine serum albumin (BSA) and, in some experiments, trehalose were added to the ATPS prior to spray drying. Electron spectroscopy for chemical analysis (ESCA), differential scanning calorimetry (DSC), UV spectrophotometry, size exclusion high-performance liquid chromatography (SEC-HPLC) and Fourier transform infrared spectroscopy (FTIR) were used for analysis of solid and reconstituted samples. The anticipated function of the ATPS was to improve the stability of the protein by preventing interactions with the air–liquid interface during drying and by improving the encapsulation of the protein in the dried powder. BSA was found to preferentially partition to the dextran phase and in the absence of PVA, BSA dominated the powder surface. In samples containing PVA, the polymer mainly covered the powder surface, even though the dextran-rich phase was continuous, thus preventing protein surface interactions and providing improved encapsulation. However, PVA was found to cause partial loss of the native structure of BSA although the protein was well encapsulated during spray drying.
ISSN:0378-5173
1873-3476
1873-3476
DOI:10.1016/j.ijpharm.2005.01.015