Loading…

Improved approach for proteochemometrics modeling: application to organic compound—amine G protein-coupled receptor interactions

Motivation: Proteochemometrics is a novel technology for the analysis of interactions of series of proteins with series of ligands. We have here customized it for analysis of large datasets and evaluated it for the modeling of the interaction of psychoactive organic amines with all the five known fa...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2005-12, Vol.21 (23), p.4289-4296
Main Authors: Lapinsh, Maris, Prusis, Peteris, Uhlén, Staffan, Wikberg, Jarl E. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motivation: Proteochemometrics is a novel technology for the analysis of interactions of series of proteins with series of ligands. We have here customized it for analysis of large datasets and evaluated it for the modeling of the interaction of psychoactive organic amines with all the five known families of amine G protein-coupled receptors (GPCRs). Results: The model exploited data for the binding of 22 compounds to 31 amine GPCRs, correlating chemical descriptions and cross-descriptions of compounds and receptors to binding affinity using a novel strategy. A highly valid model (q2 = 0.76) was obtained which was further validated by external predictions using data for 10 other entirely independent compounds, yielding the high q2ext = 0.67. Interpretation of the model reveals molecular interactions that govern psychoactive organic amines overall affinity for amine GPCRs, as well as their selectivity for particular amine GPCRs. The new modeling procedure allows us to obtain fully interpretable proteochemometrics models using essentially unlimited number of ligand and protein descriptors. Contact: jarl.wikberg@farmbio.uu.se Supplementary information: Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
1460-2059
1367-4811
DOI:10.1093/bioinformatics/bti703