Loading…
Long-distance mode choice estimation on joint travel survey and mobile phone network data
The accuracy of a transport demand model’s predictions is inherently limited by the quality of the underlying data. This issue has been highlighted by the decline in response rates for transport surveys, which have traditionally served as the primary data source for estimating transport demand model...
Saved in:
Published in: | Transportation research. Part A, Policy and practice Policy and practice, 2024-12, Vol.190, p.104293, Article 104293 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The accuracy of a transport demand model’s predictions is inherently limited by the quality of the underlying data. This issue has been highlighted by the decline in response rates for transport surveys, which have traditionally served as the primary data source for estimating transport demand models. At the same time, mobile phone network data, not requiring active participation from subjects, have become increasingly available. However, some key trip and traveller characteristics enhancing the prediction power of the estimated models are not collected in mobile phone network data. In this paper we therefore investigate what can be gained from combining mobile phone network data with travel survey data, using the strengths of each data source, to estimate long-distance mode choice models. We propose and estimate a set of mode choice demand models on joint mobile phone network data and travel survey data. We show that combining the two data sources produces more credible estimates than models estimated on each data source separately. The travel survey should preferably include the variables: travel party size, cars per household licence, licence holding, in addition to origin, destination, mode, trip purpose, age, and gender of the respondent. |
---|---|
ISSN: | 0965-8564 1879-2375 |
DOI: | 10.1016/j.tra.2024.104293 |