Loading…

Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme

•A slab convective boundary layer model is coupled to two urban land surface models.•Coupled model requires fewer forcing variables to calculate air temperature and humidity.•Coupled model can simulate urban data well forced by urban or rural observations.•Simple, rapid model provides data for appli...

Full description

Saved in:
Bibliographic Details
Published in:Urban climate 2015-03, Vol.11, p.1-23
Main Authors: Onomura, S., Grimmond, C.S.B., Lindberg, F., Holmer, B., Thorsson, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-5b76212c3cece82db086cbcd7d80500c5ca7eaeb5ffb799a54c79e6647711c583
cites cdi_FETCH-LOGICAL-c386t-5b76212c3cece82db086cbcd7d80500c5ca7eaeb5ffb799a54c79e6647711c583
container_end_page 23
container_issue
container_start_page 1
container_title Urban climate
container_volume 11
creator Onomura, S.
Grimmond, C.S.B.
Lindberg, F.
Holmer, B.
Thorsson, S.
description •A slab convective boundary layer model is coupled to two urban land surface models.•Coupled model requires fewer forcing variables to calculate air temperature and humidity.•Coupled model can simulate urban data well forced by urban or rural observations.•Simple, rapid model provides data for applications e.g. thermal comfort, air quality.•Impact of modelled urban data on thermal comfort estimation is assessed. Site-specific meteorological forcing appropriate for applications such as urban outdoor thermal comfort simulations can be obtained using a newly coupled scheme that combines a simple slab convective boundary layer (CBL) model and urban land surface model (ULSM) (here two ULSMs are considered). The former simulates daytime CBL height, air temperature and humidity, and the latter estimates urban surface energy and water balance fluxes accounting for changes in land surface cover. The coupled models are tested at a suburban site and two rural sites, one irrigated and one unirrigated grass, in Sacramento, U.S.A. All the variables modelled compare well to measurements (e.g. coefficient of determination=0.97 and root mean square error=1.5°C for air temperature). The current version is applicable to daytime conditions and needs initial state conditions for the CBL model in the appropriate range to obtain the required performance. The coupled model allows routine observations from distant sites (e.g. rural, airport) to be used to predict air temperature and relative humidity in an urban area of interest. This simple model, which can be rapidly applied, could provide urban data for applications such as air quality forecasting and building energy modelling, in addition to outdoor thermal comfort.
doi_str_mv 10.1016/j.uclim.2014.11.001
format article
fullrecord <record><control><sourceid>elsevier_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_gup_ub_gu_se_209130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212095514000856</els_id><sourcerecordid>S2212095514000856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-5b76212c3cece82db086cbcd7d80500c5ca7eaeb5ffb799a54c79e6647711c583</originalsourceid><addsrcrecordid>eNp9UctOwzAQtBBIVKVfwMU_kGAnzevAAVW8pCIucLbs9SZ1lcSVHRf1K_hlXIoQJ067szuz2t0h5JqzlDNe3mzTAL0Z0ozxZcp5yhg_I7Ms41nCmqI4_5NfkoX3W8ZY5GZNyWfk8wUntM72tjMge9paB2bsqJaTPAIanJIjtWHSNqJpg26INLBDbE50sBp7T1tnBypjNex61DGOe4TJ7JEqG0Yt3YH28oCOylFTH1wrASmO6LoDVbKXY4QeNjjgFbloZe9x8RPn5P3h_m31lKxfH59Xd-sE8rqckkJVZTwKckDAOtOK1SUo0JWuWcEYFCArlKiKtlVV08hiCVWDZbmsKs6hqPM5SU5z_QfughI7Z4a4prDSiC7sRCx1QXgUGWt4ziI_P_HBWe8dtr8KzsTRBrEV3zaIow2CcxFtiKrbkyo-CfcGnfBgMF6rjYsPEtqaf_VfLfuWjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme</title><source>ScienceDirect Freedom Collection</source><creator>Onomura, S. ; Grimmond, C.S.B. ; Lindberg, F. ; Holmer, B. ; Thorsson, S.</creator><creatorcontrib>Onomura, S. ; Grimmond, C.S.B. ; Lindberg, F. ; Holmer, B. ; Thorsson, S.</creatorcontrib><description>•A slab convective boundary layer model is coupled to two urban land surface models.•Coupled model requires fewer forcing variables to calculate air temperature and humidity.•Coupled model can simulate urban data well forced by urban or rural observations.•Simple, rapid model provides data for applications e.g. thermal comfort, air quality.•Impact of modelled urban data on thermal comfort estimation is assessed. Site-specific meteorological forcing appropriate for applications such as urban outdoor thermal comfort simulations can be obtained using a newly coupled scheme that combines a simple slab convective boundary layer (CBL) model and urban land surface model (ULSM) (here two ULSMs are considered). The former simulates daytime CBL height, air temperature and humidity, and the latter estimates urban surface energy and water balance fluxes accounting for changes in land surface cover. The coupled models are tested at a suburban site and two rural sites, one irrigated and one unirrigated grass, in Sacramento, U.S.A. All the variables modelled compare well to measurements (e.g. coefficient of determination=0.97 and root mean square error=1.5°C for air temperature). The current version is applicable to daytime conditions and needs initial state conditions for the CBL model in the appropriate range to obtain the required performance. The coupled model allows routine observations from distant sites (e.g. rural, airport) to be used to predict air temperature and relative humidity in an urban area of interest. This simple model, which can be rapidly applied, could provide urban data for applications such as air quality forecasting and building energy modelling, in addition to outdoor thermal comfort.</description><identifier>ISSN: 2212-0955</identifier><identifier>EISSN: 2212-0955</identifier><identifier>DOI: 10.1016/j.uclim.2014.11.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Boundary layer ; Fysisk geografi ; Meteorologi och atmosfärforskning ; Meteorology and Atmospheric Sciences ; Outdoor thermal comfort ; Physical Geography ; Surface energy balance ; Urban land surface model</subject><ispartof>Urban climate, 2015-03, Vol.11, p.1-23</ispartof><rights>2014 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-5b76212c3cece82db086cbcd7d80500c5ca7eaeb5ffb799a54c79e6647711c583</citedby><cites>FETCH-LOGICAL-c386t-5b76212c3cece82db086cbcd7d80500c5ca7eaeb5ffb799a54c79e6647711c583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://gup.ub.gu.se/publication/209130$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Onomura, S.</creatorcontrib><creatorcontrib>Grimmond, C.S.B.</creatorcontrib><creatorcontrib>Lindberg, F.</creatorcontrib><creatorcontrib>Holmer, B.</creatorcontrib><creatorcontrib>Thorsson, S.</creatorcontrib><title>Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme</title><title>Urban climate</title><description>•A slab convective boundary layer model is coupled to two urban land surface models.•Coupled model requires fewer forcing variables to calculate air temperature and humidity.•Coupled model can simulate urban data well forced by urban or rural observations.•Simple, rapid model provides data for applications e.g. thermal comfort, air quality.•Impact of modelled urban data on thermal comfort estimation is assessed. Site-specific meteorological forcing appropriate for applications such as urban outdoor thermal comfort simulations can be obtained using a newly coupled scheme that combines a simple slab convective boundary layer (CBL) model and urban land surface model (ULSM) (here two ULSMs are considered). The former simulates daytime CBL height, air temperature and humidity, and the latter estimates urban surface energy and water balance fluxes accounting for changes in land surface cover. The coupled models are tested at a suburban site and two rural sites, one irrigated and one unirrigated grass, in Sacramento, U.S.A. All the variables modelled compare well to measurements (e.g. coefficient of determination=0.97 and root mean square error=1.5°C for air temperature). The current version is applicable to daytime conditions and needs initial state conditions for the CBL model in the appropriate range to obtain the required performance. The coupled model allows routine observations from distant sites (e.g. rural, airport) to be used to predict air temperature and relative humidity in an urban area of interest. This simple model, which can be rapidly applied, could provide urban data for applications such as air quality forecasting and building energy modelling, in addition to outdoor thermal comfort.</description><subject>Boundary layer</subject><subject>Fysisk geografi</subject><subject>Meteorologi och atmosfärforskning</subject><subject>Meteorology and Atmospheric Sciences</subject><subject>Outdoor thermal comfort</subject><subject>Physical Geography</subject><subject>Surface energy balance</subject><subject>Urban land surface model</subject><issn>2212-0955</issn><issn>2212-0955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQtBBIVKVfwMU_kGAnzevAAVW8pCIucLbs9SZ1lcSVHRf1K_hlXIoQJ067szuz2t0h5JqzlDNe3mzTAL0Z0ozxZcp5yhg_I7Ms41nCmqI4_5NfkoX3W8ZY5GZNyWfk8wUntM72tjMge9paB2bsqJaTPAIanJIjtWHSNqJpg26INLBDbE50sBp7T1tnBypjNex61DGOe4TJ7JEqG0Yt3YH28oCOylFTH1wrASmO6LoDVbKXY4QeNjjgFbloZe9x8RPn5P3h_m31lKxfH59Xd-sE8rqckkJVZTwKckDAOtOK1SUo0JWuWcEYFCArlKiKtlVV08hiCVWDZbmsKs6hqPM5SU5z_QfughI7Z4a4prDSiC7sRCx1QXgUGWt4ziI_P_HBWe8dtr8KzsTRBrEV3zaIow2CcxFtiKrbkyo-CfcGnfBgMF6rjYsPEtqaf_VfLfuWjA</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Onomura, S.</creator><creator>Grimmond, C.S.B.</creator><creator>Lindberg, F.</creator><creator>Holmer, B.</creator><creator>Thorsson, S.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope></search><sort><creationdate>20150301</creationdate><title>Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme</title><author>Onomura, S. ; Grimmond, C.S.B. ; Lindberg, F. ; Holmer, B. ; Thorsson, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-5b76212c3cece82db086cbcd7d80500c5ca7eaeb5ffb799a54c79e6647711c583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary layer</topic><topic>Fysisk geografi</topic><topic>Meteorologi och atmosfärforskning</topic><topic>Meteorology and Atmospheric Sciences</topic><topic>Outdoor thermal comfort</topic><topic>Physical Geography</topic><topic>Surface energy balance</topic><topic>Urban land surface model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onomura, S.</creatorcontrib><creatorcontrib>Grimmond, C.S.B.</creatorcontrib><creatorcontrib>Lindberg, F.</creatorcontrib><creatorcontrib>Holmer, B.</creatorcontrib><creatorcontrib>Thorsson, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Urban climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onomura, S.</au><au>Grimmond, C.S.B.</au><au>Lindberg, F.</au><au>Holmer, B.</au><au>Thorsson, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme</atitle><jtitle>Urban climate</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>11</volume><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>2212-0955</issn><eissn>2212-0955</eissn><abstract>•A slab convective boundary layer model is coupled to two urban land surface models.•Coupled model requires fewer forcing variables to calculate air temperature and humidity.•Coupled model can simulate urban data well forced by urban or rural observations.•Simple, rapid model provides data for applications e.g. thermal comfort, air quality.•Impact of modelled urban data on thermal comfort estimation is assessed. Site-specific meteorological forcing appropriate for applications such as urban outdoor thermal comfort simulations can be obtained using a newly coupled scheme that combines a simple slab convective boundary layer (CBL) model and urban land surface model (ULSM) (here two ULSMs are considered). The former simulates daytime CBL height, air temperature and humidity, and the latter estimates urban surface energy and water balance fluxes accounting for changes in land surface cover. The coupled models are tested at a suburban site and two rural sites, one irrigated and one unirrigated grass, in Sacramento, U.S.A. All the variables modelled compare well to measurements (e.g. coefficient of determination=0.97 and root mean square error=1.5°C for air temperature). The current version is applicable to daytime conditions and needs initial state conditions for the CBL model in the appropriate range to obtain the required performance. The coupled model allows routine observations from distant sites (e.g. rural, airport) to be used to predict air temperature and relative humidity in an urban area of interest. This simple model, which can be rapidly applied, could provide urban data for applications such as air quality forecasting and building energy modelling, in addition to outdoor thermal comfort.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.uclim.2014.11.001</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2212-0955
ispartof Urban climate, 2015-03, Vol.11, p.1-23
issn 2212-0955
2212-0955
language eng
recordid cdi_swepub_primary_oai_gup_ub_gu_se_209130
source ScienceDirect Freedom Collection
subjects Boundary layer
Fysisk geografi
Meteorologi och atmosfärforskning
Meteorology and Atmospheric Sciences
Outdoor thermal comfort
Physical Geography
Surface energy balance
Urban land surface model
title Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meteorological%20forcing%20data%20for%20urban%20outdoor%20thermal%20comfort%20models%20from%20a%20coupled%20convective%20boundary%20layer%20and%20surface%20energy%20balance%20scheme&rft.jtitle=Urban%20climate&rft.au=Onomura,%20S.&rft.date=2015-03-01&rft.volume=11&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=2212-0955&rft.eissn=2212-0955&rft_id=info:doi/10.1016/j.uclim.2014.11.001&rft_dat=%3Celsevier_swepu%3ES2212095514000856%3C/elsevier_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-5b76212c3cece82db086cbcd7d80500c5ca7eaeb5ffb799a54c79e6647711c583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true