Loading…

Cholera toxin, and the related nontoxic adjuvants mmCT and dmLT, promote human Th17 responses via cyclic AMP-protein kinase A and inflammasome-dependent IL-1 signaling

We have examined the molecular pathways involved in the adjuvant action of cholera toxin (CT) and two novel nontoxic molecules, multiple-mutated CT (mmCT) and double-mutant heat-labile toxin (dmLT) on human T cell responses. Human PBMCs or isolated monocytes were stimulated in vitro with CT, mmCT, o...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2015-04, Vol.194 (8), p.3829-3839
Main Authors: Larena, Maximilian, Holmgren, Jan, Lebens, Michael, Terrinoni, Manuela, Lundgren, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have examined the molecular pathways involved in the adjuvant action of cholera toxin (CT) and two novel nontoxic molecules, multiple-mutated CT (mmCT) and double-mutant heat-labile toxin (dmLT) on human T cell responses. Human PBMCs or isolated monocytes were stimulated in vitro with CT, mmCT, or dmLT plus a polyclonal stimulus (staphylococcal enterotoxin B) or specific bacterial Ags, and effects on expression of cytokines and signaling molecules were determined. CT, mmCT, and dmLT strongly enhanced IL-17A and to a lesser extent IL-13 responses, but had little effect on IFN-γ production or cell proliferation. Intracellular cytokine staining revealed that the enhanced IL-17A production was largely confined to CD4(+) T cells and coculture experiments showed that the IL-17A promotion was effectively induced by adjuvant-treated monocytes. Relative to CT, mmCT and dmLT induced at least 100-fold lower levels of cAMP, yet this cAMP was enough and essential for the promotion of Th17 responses. Thus, inhibition of cAMP-dependent protein kinase A was abolished, and stimulation with a cAMP analog mimicked the adjuvant effect. Furthermore, CT, mmCT, and dmLT induced IL-1β production and caspase-1 activation in monocytes, which was associated with increased expression of key proinflammatory and inflammasome-related genes, including NLRP1, NLRP3, and NLRC4. Inflammasome inhibition with a specific caspase-1 inhibitor, or blocking of IL-1 signaling by IL-1 receptor antagonist, abrogated the Th17-promoting effect. We conclude that CT, mmCT, and dmLT promote human Th17 responses via cAMP-dependent protein kinase A and caspase-1/inflammasome-dependent IL-1 signaling.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1401633