Loading…
Climate of the late Pleistocene and early Holocene in coastal South China inferred from submerged wood samples
Tree-ring variability of submerged wood specimens in coastal areas provides important clues about sea level change and climate variability of the past. We dated submerged wood samples from coastal Fujian province in China using the radiocarbon methods and investigated their tree-ring variability. Th...
Saved in:
Published in: | Quaternary international 2017-08, Vol.447, p.111-117 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tree-ring variability of submerged wood specimens in coastal areas provides important clues about sea level change and climate variability of the past. We dated submerged wood samples from coastal Fujian province in China using the radiocarbon methods and investigated their tree-ring variability. The submerged wood samples from the Shenhu Bay that date to the early Holocene (∼8000 calibrated years B.P.) may be related to the rise of the sea level after the Last Glacial Maximum (LGM). The submerged wood samples from the Qianhu Bay site dated to the Marine Isotope Stage 3 (MIS 3) (>40,000 calibrated years B.P.). Most of the submerged wood samples are from coniferous trees with frequent branching tree rings. Frequent branching tree rings in this region are mostly found from the currently endangered coniferous species with narrow ecological amplitude at humid sites. Tree rings of the submerged sample show conspicuous interdecadal variability (∼20 years) than interannual variations, which differs from modern tree rings of nearby regions which have stronger interannual and multi-decadal variability. Our study highlights the potential to use submerged samples of coastal Southeast China for paleoclimate studies. |
---|---|
ISSN: | 1040-6182 1873-4553 |
DOI: | 10.1016/j.quaint.2017.02.033 |