Loading…

Epidermal growth factor receptor function in the human urothelium

Purpose Epidermal growth factor receptor (EGFr)-targeted therapy may be used in subgroups of patients with urinary bladder cancer. Here we assessed the role of EGFr in urothelial proliferation and migration in a two- and three-dimensional cell culture system. Methods UROtsa cells derived from normal...

Full description

Saved in:
Bibliographic Details
Published in:International urology and nephrology 2018-04, Vol.50 (4), p.647-656
Main Authors: Wasén, C., Ekstrand, M., Levin, M., Giglio, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Epidermal growth factor receptor (EGFr)-targeted therapy may be used in subgroups of patients with urinary bladder cancer. Here we assessed the role of EGFr in urothelial proliferation and migration in a two- and three-dimensional cell culture system. Methods UROtsa cells derived from normal urothelium and malignant T24 cells were cultured in a Type I collagen gel. Proliferation and migration of urothelial cells, in the absence and presence of the EGFr inhibitor cetuximab, were assessed with a proliferation test (ATCC) and with the Axioplan 2 imaging microscope with a motorized stage (Carl Zeiss), respectively. The expressions of cytokeratin (CK) 17, CK20, EGFr, pEGFr, laminin, occludin and zonula occludens 1 (ZO-1) were assessed with immunohistochemistry and/or western blot. Results UROtsa spheroids were formed after 7 days in culture, while T24 cells did not form spheroids. UROtsa expressed CK20 but not laminin or CK17 and consequently resembled umbrella cells. In UROtsa and T24, cetuximab inhibited urothelial proliferation, induced cleavage of EGFr and/or pEGFR but did not affect urothelial migration. The tight junction protein occludin was cleaved, and the formation of cellular spheroids was inhibited in UROtsa by the presence of cetuximab. Conclusions EGFr modulates urothelial proliferation and the formation of the three-dimensional structure of the urothelium possibly by interfering with occludin. The present data also show a cell culture technique enabling phenotypically normal urothelial cells to form epithelial structures in contrast to malignant urothelial cells.
ISSN:0301-1623
1573-2584
1573-2584
DOI:10.1007/s11255-018-1831-z