Loading…
Colloidal lithography nanostructured Pd/PdOx core-shell sensor for ppb level H2S
In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdOx) core-shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the...
Saved in:
Published in: | Nanotechnology 2018, Vol.29 (25) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 25 |
container_start_page | |
container_title | Nanotechnology |
container_volume | 29 |
creator | Benedict, Samatha Lumdee, Chatdanai Dmitriev, Alexandre Anand, Srinivasan Bhat, Navakanta |
description | In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdOx) core-shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 degrees C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdOx sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15s and 100s, respectively) compared to the unstructured Pd/PdOx counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdOx sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy. |
doi_str_mv | 10.1088/1361-6528/aaba88 |
format | article |
fullrecord | <record><control><sourceid>swepub</sourceid><recordid>TN_cdi_swepub_primary_oai_gup_ub_gu_se_267663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_kth_227724</sourcerecordid><originalsourceid>FETCH-LOGICAL-s161t-7d199c08a0eb56c053a724f8e85eae173dffdcb1c2c7c5b6ffd3293ecfe990fc3</originalsourceid><addsrcrecordid>eNp9jslOwzAYhH0AibLcOfoFQr0ktnOsylKkSq3EcrUc-3cSMHVkJ0Dfnkhw5jAazafRaBC6puSGEqWWlAtaiIqppTGNUeoELUhdyaIsVXmGznN-I4RSxegC7dcxhNg7E3Doxy62yQzdER_MIeYxTXacEji8d8u9231jGxMUuYMQcIZDjgn7WcPQ4ACfEPCGPV2iU29Chqs_v0Av93fP602x3T08rlfbIlNBx0I6WteWKEOgqYQlFTeSlV6BqsAAldx572xDLbPSVo2YE2c1B-uhrom3_AIVv7v5C4ap0UPqP0w66mh63U6DnlE76QyaCSkE_7d_27-udEytfh87zZicn_AfiPBl_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Colloidal lithography nanostructured Pd/PdOx core-shell sensor for ppb level H2S</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Benedict, Samatha ; Lumdee, Chatdanai ; Dmitriev, Alexandre ; Anand, Srinivasan ; Bhat, Navakanta</creator><creatorcontrib>Benedict, Samatha ; Lumdee, Chatdanai ; Dmitriev, Alexandre ; Anand, Srinivasan ; Bhat, Navakanta</creatorcontrib><description>In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdOx) core-shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 degrees C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdOx sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15s and 100s, respectively) compared to the unstructured Pd/PdOx counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdOx sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.</description><identifier>ISSN: 0957-4484</identifier><identifier>ISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/aaba88</identifier><language>eng</language><subject>carbon-monoxide ; colloidal lithography ; Fysik ; gas sensors ; hydrogen-sulfide ; in-situ xps ; Materials Science ; nanodiscs ; nanoflake thin-films ; palladium oxide ; pd oxidation ; pdo ; Physical Sciences ; Physics ; plasma oxidation ; room-temperature ; Science & Technology - Other Topics ; sensing performance</subject><ispartof>Nanotechnology, 2018, Vol.29 (25)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227724$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/267663$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Benedict, Samatha</creatorcontrib><creatorcontrib>Lumdee, Chatdanai</creatorcontrib><creatorcontrib>Dmitriev, Alexandre</creatorcontrib><creatorcontrib>Anand, Srinivasan</creatorcontrib><creatorcontrib>Bhat, Navakanta</creatorcontrib><title>Colloidal lithography nanostructured Pd/PdOx core-shell sensor for ppb level H2S</title><title>Nanotechnology</title><description>In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdOx) core-shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 degrees C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdOx sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15s and 100s, respectively) compared to the unstructured Pd/PdOx counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdOx sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.</description><subject>carbon-monoxide</subject><subject>colloidal lithography</subject><subject>Fysik</subject><subject>gas sensors</subject><subject>hydrogen-sulfide</subject><subject>in-situ xps</subject><subject>Materials Science</subject><subject>nanodiscs</subject><subject>nanoflake thin-films</subject><subject>palladium oxide</subject><subject>pd oxidation</subject><subject>pdo</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>plasma oxidation</subject><subject>room-temperature</subject><subject>Science & Technology - Other Topics</subject><subject>sensing performance</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9jslOwzAYhH0AibLcOfoFQr0ktnOsylKkSq3EcrUc-3cSMHVkJ0Dfnkhw5jAazafRaBC6puSGEqWWlAtaiIqppTGNUeoELUhdyaIsVXmGznN-I4RSxegC7dcxhNg7E3Doxy62yQzdER_MIeYxTXacEji8d8u9231jGxMUuYMQcIZDjgn7WcPQ4ACfEPCGPV2iU29Chqs_v0Av93fP602x3T08rlfbIlNBx0I6WteWKEOgqYQlFTeSlV6BqsAAldx572xDLbPSVo2YE2c1B-uhrom3_AIVv7v5C4ap0UPqP0w66mh63U6DnlE76QyaCSkE_7d_27-udEytfh87zZicn_AfiPBl_g</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Benedict, Samatha</creator><creator>Lumdee, Chatdanai</creator><creator>Dmitriev, Alexandre</creator><creator>Anand, Srinivasan</creator><creator>Bhat, Navakanta</creator><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>F1U</scope></search><sort><creationdate>2018</creationdate><title>Colloidal lithography nanostructured Pd/PdOx core-shell sensor for ppb level H2S</title><author>Benedict, Samatha ; Lumdee, Chatdanai ; Dmitriev, Alexandre ; Anand, Srinivasan ; Bhat, Navakanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s161t-7d199c08a0eb56c053a724f8e85eae173dffdcb1c2c7c5b6ffd3293ecfe990fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>carbon-monoxide</topic><topic>colloidal lithography</topic><topic>Fysik</topic><topic>gas sensors</topic><topic>hydrogen-sulfide</topic><topic>in-situ xps</topic><topic>Materials Science</topic><topic>nanodiscs</topic><topic>nanoflake thin-films</topic><topic>palladium oxide</topic><topic>pd oxidation</topic><topic>pdo</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>plasma oxidation</topic><topic>room-temperature</topic><topic>Science & Technology - Other Topics</topic><topic>sensing performance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedict, Samatha</creatorcontrib><creatorcontrib>Lumdee, Chatdanai</creatorcontrib><creatorcontrib>Dmitriev, Alexandre</creatorcontrib><creatorcontrib>Anand, Srinivasan</creatorcontrib><creatorcontrib>Bhat, Navakanta</creatorcontrib><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedict, Samatha</au><au>Lumdee, Chatdanai</au><au>Dmitriev, Alexandre</au><au>Anand, Srinivasan</au><au>Bhat, Navakanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal lithography nanostructured Pd/PdOx core-shell sensor for ppb level H2S</atitle><jtitle>Nanotechnology</jtitle><date>2018</date><risdate>2018</risdate><volume>29</volume><issue>25</issue><issn>0957-4484</issn><issn>1361-6528</issn><abstract>In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdOx) core-shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 degrees C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdOx sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15s and 100s, respectively) compared to the unstructured Pd/PdOx counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdOx sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.</abstract><doi>10.1088/1361-6528/aaba88</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2018, Vol.29 (25) |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_swepub_primary_oai_gup_ub_gu_se_267663 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | carbon-monoxide colloidal lithography Fysik gas sensors hydrogen-sulfide in-situ xps Materials Science nanodiscs nanoflake thin-films palladium oxide pd oxidation pdo Physical Sciences Physics plasma oxidation room-temperature Science & Technology - Other Topics sensing performance |
title | Colloidal lithography nanostructured Pd/PdOx core-shell sensor for ppb level H2S |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20lithography%20nanostructured%20Pd/PdOx%20core-shell%20sensor%20for%20ppb%20level%20H2S&rft.jtitle=Nanotechnology&rft.au=Benedict,%20Samatha&rft.date=2018&rft.volume=29&rft.issue=25&rft.issn=0957-4484&rft_id=info:doi/10.1088/1361-6528/aaba88&rft_dat=%3Cswepub%3Eoai_DiVA_org_kth_227724%3C/swepub%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-s161t-7d199c08a0eb56c053a724f8e85eae173dffdcb1c2c7c5b6ffd3293ecfe990fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |