Loading…

Triggering MSR1 promotes JNK‐mediated inflammation in IL‐4‐activated macrophages

Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL‐4, modulated the phagosomal proteome to con...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2019-06, Vol.38 (11), p.n/a
Main Authors: Guo, Manman, Härtlova, Anetta, Gierliński, Marek, Prescott, Alan, Castellvi, Josep, Losa, Javier Hernandez, Petersen, Sine K, Wenzel, Ulf A, Dill, Brian D, Emmerich, Christoph H, Ramon Y Cajal, Santiago, Russell, David G, Trost, Matthias
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5579-18c83a666e310e2d3bc9029c794899bc51350f2724b10b2d636281ed70f5bc453
cites cdi_FETCH-LOGICAL-c5579-18c83a666e310e2d3bc9029c794899bc51350f2724b10b2d636281ed70f5bc453
container_end_page n/a
container_issue 11
container_start_page
container_title The EMBO journal
container_volume 38
creator Guo, Manman
Härtlova, Anetta
Gierliński, Marek
Prescott, Alan
Castellvi, Josep
Losa, Javier Hernandez
Petersen, Sine K
Wenzel, Ulf A
Dill, Brian D
Emmerich, Christoph H
Ramon Y Cajal, Santiago
Russell, David G
Trost, Matthias
description Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL‐4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL‐4‐activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL‐4‐activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti‐inflammatory to a pro‐inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo . Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization. Synopsis Macrophage scavenger receptor MSR1 is a key phagocytic receptor for the uptake of lipids and cell debris in macrophages. In IL‐4 activated macrophages MSR1 becomes ubiquitylated, recruits the Tak1/MKK7 kinase complex and signals directly through JNK, which induces pro‐inflammatory cytokine production. Proteomics analysis of phagosomes indicate that alternative activation by IL‐4 enhances phagosomal homeostatic functions in macrophages. Triggering of MSR1 in IL‐4 activated macrophages leads to its ubiquitylation, which recruits the TAK1/MKK7/JNK kinase complex. This leads to pro‐inflammatory signalling, inducing a phenotypic switch of the macrophages. MSR1 ubiquitylation and enhanced JNK signalling is present in human tumour associated macrophages. Graphical Abstract The macrophage scavenger receptor 1 (MSR1) promotes the recruitment of the TAK1/MKK7/JNK signalling complex to the phagosome to drive a macrophage phenotypic shift from an anti‐inflammatory to a pro‐inflammatory one.
doi_str_mv 10.15252/embj.2018100299
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_gup_ub_gu_se_281317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233749754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5579-18c83a666e310e2d3bc9029c794899bc51350f2724b10b2d636281ed70f5bc453</originalsourceid><addsrcrecordid>eNqFUctuFDEQtBCILAl3TmgkzhPcfoxtCSFBFCDJhkhJ4Gp5PJ6JVzsP7JlEufEJfCNfgrO7SdgD4mBZdldVV3ch9ArwPnDCyVvXlot9gkECxkSpJ2gGrMA5wYI_RTNMCsgZSLWDXsS4wBhzKeA52qGAicSSzdD3y-CbxgXfNdnpxTlkQ-jbfnQxO_568vvnr9ZV3oyuynxXL03bmtH3XXpkR_NUZekYO_rrFaQ1NvTDlWlc3EPParOM7uXm3kXfPh1eHnzJ52efjw4-zHPLuVA5SCupKYrCJUeOVLS0Ks1hhWJSqdJyoBzXRBBWAi5JVdCCSHCVwDUvLeN0F-Vr3XjjhqnUQ_CtCbe6N14306DTVzPp6HSiURAJ_36NT-A0mnXdGMxyi7Zd6fyVbvprXXDGxarhm41A6H9MLo560U-hSzNqQigVTAnOEgqvUWkhMQZXP3QArFfJ6bvk9GNyifL6b2cPhPuoEuDdGnDjl-72v4L68PTj8ZY-bDY13IXtwqPxf3r6Awe3uOk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233749754</pqid></control><display><type>article</type><title>Triggering MSR1 promotes JNK‐mediated inflammation in IL‐4‐activated macrophages</title><source>PubMed Central</source><creator>Guo, Manman ; Härtlova, Anetta ; Gierliński, Marek ; Prescott, Alan ; Castellvi, Josep ; Losa, Javier Hernandez ; Petersen, Sine K ; Wenzel, Ulf A ; Dill, Brian D ; Emmerich, Christoph H ; Ramon Y Cajal, Santiago ; Russell, David G ; Trost, Matthias</creator><creatorcontrib>Guo, Manman ; Härtlova, Anetta ; Gierliński, Marek ; Prescott, Alan ; Castellvi, Josep ; Losa, Javier Hernandez ; Petersen, Sine K ; Wenzel, Ulf A ; Dill, Brian D ; Emmerich, Christoph H ; Ramon Y Cajal, Santiago ; Russell, David G ; Trost, Matthias</creatorcontrib><description>Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL‐4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL‐4‐activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL‐4‐activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti‐inflammatory to a pro‐inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo . Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization. Synopsis Macrophage scavenger receptor MSR1 is a key phagocytic receptor for the uptake of lipids and cell debris in macrophages. In IL‐4 activated macrophages MSR1 becomes ubiquitylated, recruits the Tak1/MKK7 kinase complex and signals directly through JNK, which induces pro‐inflammatory cytokine production. Proteomics analysis of phagosomes indicate that alternative activation by IL‐4 enhances phagosomal homeostatic functions in macrophages. Triggering of MSR1 in IL‐4 activated macrophages leads to its ubiquitylation, which recruits the TAK1/MKK7/JNK kinase complex. This leads to pro‐inflammatory signalling, inducing a phenotypic switch of the macrophages. MSR1 ubiquitylation and enhanced JNK signalling is present in human tumour associated macrophages. Graphical Abstract The macrophage scavenger receptor 1 (MSR1) promotes the recruitment of the TAK1/MKK7/JNK signalling complex to the phagosome to drive a macrophage phenotypic shift from an anti‐inflammatory to a pro‐inflammatory one.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2018100299</identifier><identifier>PMID: 31028084</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Cell activation ; Cell and Molecular Biology ; Cell Polarity - drug effects ; Cell Polarity - genetics ; Cell- och molekylärbiologi ; Cells, Cultured ; Clonal deletion ; Debris ; EMBO19 ; EMBO31 ; EMBO37 ; Female ; Homeostasis ; Humans ; Immunologi inom det medicinska området ; Immunology in the medical area ; Inflammation ; Inflammation - chemically induced ; Inflammation - genetics ; Inflammation - metabolism ; Inflammation Mediators - physiology ; Interleukin-4 - pharmacology ; JNK Mitogen-Activated Protein Kinases - physiology ; Kinases ; Lipids ; Lipolysis ; Lipolysis - drug effects ; Lipolysis - genetics ; Lipoproteins, LDL - pharmacology ; Macrophage Activation - drug effects ; Macrophage Activation - genetics ; macrophage scavenger receptor 1 ; Macrophages ; Macrophages - drug effects ; Macrophages - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Nutrient transport ; Ovarian cancer ; Pathogens ; Phagocytes ; Phagocytosis ; Phagocytosis - drug effects ; Phagocytosis - genetics ; phagosome ; Phagosomes ; Polysaccharides - pharmacology ; Protein Processing, Post-Translational - genetics ; Proteolysis ; Proteomics ; RAW 264.7 Cells ; Recruitment ; scavenger receptor ; Scavenger receptors ; Scavenger Receptors, Class A - agonists ; Scavenger Receptors, Class A - chemistry ; Scavenger Receptors, Class A - genetics ; Scavenger Receptors, Class A - metabolism ; Scavenging ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Signaling ; TAK1 protein ; Tumors ; tumour‐associated macrophages ; Ubiquitin ; Ubiquitination - genetics</subject><ispartof>The EMBO journal, 2019-06, Vol.38 (11), p.n/a</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2019 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5579-18c83a666e310e2d3bc9029c794899bc51350f2724b10b2d636281ed70f5bc453</citedby><cites>FETCH-LOGICAL-c5579-18c83a666e310e2d3bc9029c794899bc51350f2724b10b2d636281ed70f5bc453</cites><orcidid>0000-0002-5732-700X ; 0000-0002-8152-4361 ; 0000-0002-7928-8902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545745/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545745/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31028084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/281317$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Manman</creatorcontrib><creatorcontrib>Härtlova, Anetta</creatorcontrib><creatorcontrib>Gierliński, Marek</creatorcontrib><creatorcontrib>Prescott, Alan</creatorcontrib><creatorcontrib>Castellvi, Josep</creatorcontrib><creatorcontrib>Losa, Javier Hernandez</creatorcontrib><creatorcontrib>Petersen, Sine K</creatorcontrib><creatorcontrib>Wenzel, Ulf A</creatorcontrib><creatorcontrib>Dill, Brian D</creatorcontrib><creatorcontrib>Emmerich, Christoph H</creatorcontrib><creatorcontrib>Ramon Y Cajal, Santiago</creatorcontrib><creatorcontrib>Russell, David G</creatorcontrib><creatorcontrib>Trost, Matthias</creatorcontrib><title>Triggering MSR1 promotes JNK‐mediated inflammation in IL‐4‐activated macrophages</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL‐4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL‐4‐activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL‐4‐activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti‐inflammatory to a pro‐inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo . Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization. Synopsis Macrophage scavenger receptor MSR1 is a key phagocytic receptor for the uptake of lipids and cell debris in macrophages. In IL‐4 activated macrophages MSR1 becomes ubiquitylated, recruits the Tak1/MKK7 kinase complex and signals directly through JNK, which induces pro‐inflammatory cytokine production. Proteomics analysis of phagosomes indicate that alternative activation by IL‐4 enhances phagosomal homeostatic functions in macrophages. Triggering of MSR1 in IL‐4 activated macrophages leads to its ubiquitylation, which recruits the TAK1/MKK7/JNK kinase complex. This leads to pro‐inflammatory signalling, inducing a phenotypic switch of the macrophages. MSR1 ubiquitylation and enhanced JNK signalling is present in human tumour associated macrophages. Graphical Abstract The macrophage scavenger receptor 1 (MSR1) promotes the recruitment of the TAK1/MKK7/JNK signalling complex to the phagosome to drive a macrophage phenotypic shift from an anti‐inflammatory to a pro‐inflammatory one.</description><subject>Animals</subject><subject>Cell activation</subject><subject>Cell and Molecular Biology</subject><subject>Cell Polarity - drug effects</subject><subject>Cell Polarity - genetics</subject><subject>Cell- och molekylärbiologi</subject><subject>Cells, Cultured</subject><subject>Clonal deletion</subject><subject>Debris</subject><subject>EMBO19</subject><subject>EMBO31</subject><subject>EMBO37</subject><subject>Female</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immunologi inom det medicinska området</subject><subject>Immunology in the medical area</subject><subject>Inflammation</subject><subject>Inflammation - chemically induced</subject><subject>Inflammation - genetics</subject><subject>Inflammation - metabolism</subject><subject>Inflammation Mediators - physiology</subject><subject>Interleukin-4 - pharmacology</subject><subject>JNK Mitogen-Activated Protein Kinases - physiology</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>Lipolysis - drug effects</subject><subject>Lipolysis - genetics</subject><subject>Lipoproteins, LDL - pharmacology</subject><subject>Macrophage Activation - drug effects</subject><subject>Macrophage Activation - genetics</subject><subject>macrophage scavenger receptor 1</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Nutrient transport</subject><subject>Ovarian cancer</subject><subject>Pathogens</subject><subject>Phagocytes</subject><subject>Phagocytosis</subject><subject>Phagocytosis - drug effects</subject><subject>Phagocytosis - genetics</subject><subject>phagosome</subject><subject>Phagosomes</subject><subject>Polysaccharides - pharmacology</subject><subject>Protein Processing, Post-Translational - genetics</subject><subject>Proteolysis</subject><subject>Proteomics</subject><subject>RAW 264.7 Cells</subject><subject>Recruitment</subject><subject>scavenger receptor</subject><subject>Scavenger receptors</subject><subject>Scavenger Receptors, Class A - agonists</subject><subject>Scavenger Receptors, Class A - chemistry</subject><subject>Scavenger Receptors, Class A - genetics</subject><subject>Scavenger Receptors, Class A - metabolism</subject><subject>Scavenging</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Signaling</subject><subject>TAK1 protein</subject><subject>Tumors</subject><subject>tumour‐associated macrophages</subject><subject>Ubiquitin</subject><subject>Ubiquitination - genetics</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUctuFDEQtBCILAl3TmgkzhPcfoxtCSFBFCDJhkhJ4Gp5PJ6JVzsP7JlEufEJfCNfgrO7SdgD4mBZdldVV3ch9ArwPnDCyVvXlot9gkECxkSpJ2gGrMA5wYI_RTNMCsgZSLWDXsS4wBhzKeA52qGAicSSzdD3y-CbxgXfNdnpxTlkQ-jbfnQxO_568vvnr9ZV3oyuynxXL03bmtH3XXpkR_NUZekYO_rrFaQ1NvTDlWlc3EPParOM7uXm3kXfPh1eHnzJ52efjw4-zHPLuVA5SCupKYrCJUeOVLS0Ks1hhWJSqdJyoBzXRBBWAi5JVdCCSHCVwDUvLeN0F-Vr3XjjhqnUQ_CtCbe6N14306DTVzPp6HSiURAJ_36NT-A0mnXdGMxyi7Zd6fyVbvprXXDGxarhm41A6H9MLo560U-hSzNqQigVTAnOEgqvUWkhMQZXP3QArFfJ6bvk9GNyifL6b2cPhPuoEuDdGnDjl-72v4L68PTj8ZY-bDY13IXtwqPxf3r6Awe3uOk</recordid><startdate>20190603</startdate><enddate>20190603</enddate><creator>Guo, Manman</creator><creator>Härtlova, Anetta</creator><creator>Gierliński, Marek</creator><creator>Prescott, Alan</creator><creator>Castellvi, Josep</creator><creator>Losa, Javier Hernandez</creator><creator>Petersen, Sine K</creator><creator>Wenzel, Ulf A</creator><creator>Dill, Brian D</creator><creator>Emmerich, Christoph H</creator><creator>Ramon Y Cajal, Santiago</creator><creator>Russell, David G</creator><creator>Trost, Matthias</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0002-5732-700X</orcidid><orcidid>https://orcid.org/0000-0002-8152-4361</orcidid><orcidid>https://orcid.org/0000-0002-7928-8902</orcidid></search><sort><creationdate>20190603</creationdate><title>Triggering MSR1 promotes JNK‐mediated inflammation in IL‐4‐activated macrophages</title><author>Guo, Manman ; Härtlova, Anetta ; Gierliński, Marek ; Prescott, Alan ; Castellvi, Josep ; Losa, Javier Hernandez ; Petersen, Sine K ; Wenzel, Ulf A ; Dill, Brian D ; Emmerich, Christoph H ; Ramon Y Cajal, Santiago ; Russell, David G ; Trost, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5579-18c83a666e310e2d3bc9029c794899bc51350f2724b10b2d636281ed70f5bc453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell activation</topic><topic>Cell and Molecular Biology</topic><topic>Cell Polarity - drug effects</topic><topic>Cell Polarity - genetics</topic><topic>Cell- och molekylärbiologi</topic><topic>Cells, Cultured</topic><topic>Clonal deletion</topic><topic>Debris</topic><topic>EMBO19</topic><topic>EMBO31</topic><topic>EMBO37</topic><topic>Female</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immunologi inom det medicinska området</topic><topic>Immunology in the medical area</topic><topic>Inflammation</topic><topic>Inflammation - chemically induced</topic><topic>Inflammation - genetics</topic><topic>Inflammation - metabolism</topic><topic>Inflammation Mediators - physiology</topic><topic>Interleukin-4 - pharmacology</topic><topic>JNK Mitogen-Activated Protein Kinases - physiology</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>Lipolysis - drug effects</topic><topic>Lipolysis - genetics</topic><topic>Lipoproteins, LDL - pharmacology</topic><topic>Macrophage Activation - drug effects</topic><topic>Macrophage Activation - genetics</topic><topic>macrophage scavenger receptor 1</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Nutrient transport</topic><topic>Ovarian cancer</topic><topic>Pathogens</topic><topic>Phagocytes</topic><topic>Phagocytosis</topic><topic>Phagocytosis - drug effects</topic><topic>Phagocytosis - genetics</topic><topic>phagosome</topic><topic>Phagosomes</topic><topic>Polysaccharides - pharmacology</topic><topic>Protein Processing, Post-Translational - genetics</topic><topic>Proteolysis</topic><topic>Proteomics</topic><topic>RAW 264.7 Cells</topic><topic>Recruitment</topic><topic>scavenger receptor</topic><topic>Scavenger receptors</topic><topic>Scavenger Receptors, Class A - agonists</topic><topic>Scavenger Receptors, Class A - chemistry</topic><topic>Scavenger Receptors, Class A - genetics</topic><topic>Scavenger Receptors, Class A - metabolism</topic><topic>Scavenging</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Signaling</topic><topic>TAK1 protein</topic><topic>Tumors</topic><topic>tumour‐associated macrophages</topic><topic>Ubiquitin</topic><topic>Ubiquitination - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Manman</creatorcontrib><creatorcontrib>Härtlova, Anetta</creatorcontrib><creatorcontrib>Gierliński, Marek</creatorcontrib><creatorcontrib>Prescott, Alan</creatorcontrib><creatorcontrib>Castellvi, Josep</creatorcontrib><creatorcontrib>Losa, Javier Hernandez</creatorcontrib><creatorcontrib>Petersen, Sine K</creatorcontrib><creatorcontrib>Wenzel, Ulf A</creatorcontrib><creatorcontrib>Dill, Brian D</creatorcontrib><creatorcontrib>Emmerich, Christoph H</creatorcontrib><creatorcontrib>Ramon Y Cajal, Santiago</creatorcontrib><creatorcontrib>Russell, David G</creatorcontrib><creatorcontrib>Trost, Matthias</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Manman</au><au>Härtlova, Anetta</au><au>Gierliński, Marek</au><au>Prescott, Alan</au><au>Castellvi, Josep</au><au>Losa, Javier Hernandez</au><au>Petersen, Sine K</au><au>Wenzel, Ulf A</au><au>Dill, Brian D</au><au>Emmerich, Christoph H</au><au>Ramon Y Cajal, Santiago</au><au>Russell, David G</au><au>Trost, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triggering MSR1 promotes JNK‐mediated inflammation in IL‐4‐activated macrophages</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2019-06-03</date><risdate>2019</risdate><volume>38</volume><issue>11</issue><epage>n/a</epage><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><abstract>Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL‐4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL‐4‐activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL‐4‐activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti‐inflammatory to a pro‐inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo . Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization. Synopsis Macrophage scavenger receptor MSR1 is a key phagocytic receptor for the uptake of lipids and cell debris in macrophages. In IL‐4 activated macrophages MSR1 becomes ubiquitylated, recruits the Tak1/MKK7 kinase complex and signals directly through JNK, which induces pro‐inflammatory cytokine production. Proteomics analysis of phagosomes indicate that alternative activation by IL‐4 enhances phagosomal homeostatic functions in macrophages. Triggering of MSR1 in IL‐4 activated macrophages leads to its ubiquitylation, which recruits the TAK1/MKK7/JNK kinase complex. This leads to pro‐inflammatory signalling, inducing a phenotypic switch of the macrophages. MSR1 ubiquitylation and enhanced JNK signalling is present in human tumour associated macrophages. Graphical Abstract The macrophage scavenger receptor 1 (MSR1) promotes the recruitment of the TAK1/MKK7/JNK signalling complex to the phagosome to drive a macrophage phenotypic shift from an anti‐inflammatory to a pro‐inflammatory one.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31028084</pmid><doi>10.15252/embj.2018100299</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5732-700X</orcidid><orcidid>https://orcid.org/0000-0002-8152-4361</orcidid><orcidid>https://orcid.org/0000-0002-7928-8902</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2019-06, Vol.38 (11), p.n/a
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_swepub_primary_oai_gup_ub_gu_se_281317
source PubMed Central
subjects Animals
Cell activation
Cell and Molecular Biology
Cell Polarity - drug effects
Cell Polarity - genetics
Cell- och molekylärbiologi
Cells, Cultured
Clonal deletion
Debris
EMBO19
EMBO31
EMBO37
Female
Homeostasis
Humans
Immunologi inom det medicinska området
Immunology in the medical area
Inflammation
Inflammation - chemically induced
Inflammation - genetics
Inflammation - metabolism
Inflammation Mediators - physiology
Interleukin-4 - pharmacology
JNK Mitogen-Activated Protein Kinases - physiology
Kinases
Lipids
Lipolysis
Lipolysis - drug effects
Lipolysis - genetics
Lipoproteins, LDL - pharmacology
Macrophage Activation - drug effects
Macrophage Activation - genetics
macrophage scavenger receptor 1
Macrophages
Macrophages - drug effects
Macrophages - physiology
Mice
Mice, Inbred C57BL
Mice, Knockout
Nutrient transport
Ovarian cancer
Pathogens
Phagocytes
Phagocytosis
Phagocytosis - drug effects
Phagocytosis - genetics
phagosome
Phagosomes
Polysaccharides - pharmacology
Protein Processing, Post-Translational - genetics
Proteolysis
Proteomics
RAW 264.7 Cells
Recruitment
scavenger receptor
Scavenger receptors
Scavenger Receptors, Class A - agonists
Scavenger Receptors, Class A - chemistry
Scavenger Receptors, Class A - genetics
Scavenger Receptors, Class A - metabolism
Scavenging
Signal Transduction - drug effects
Signal Transduction - genetics
Signaling
TAK1 protein
Tumors
tumour‐associated macrophages
Ubiquitin
Ubiquitination - genetics
title Triggering MSR1 promotes JNK‐mediated inflammation in IL‐4‐activated macrophages
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triggering%20MSR1%20promotes%20JNK%E2%80%90mediated%20inflammation%20in%20IL%E2%80%904%E2%80%90activated%20macrophages&rft.jtitle=The%20EMBO%20journal&rft.au=Guo,%20Manman&rft.date=2019-06-03&rft.volume=38&rft.issue=11&rft.epage=n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2018100299&rft_dat=%3Cproquest_swepu%3E2233749754%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5579-18c83a666e310e2d3bc9029c794899bc51350f2724b10b2d636281ed70f5bc453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2233749754&rft_id=info:pmid/31028084&rfr_iscdi=true