Loading…
Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse
Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counte...
Saved in:
Published in: | American journal of respiratory and critical care medicine 2020-05, Vol.201 (10), p.1218-1229 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3 |
container_end_page | 1229 |
container_issue | 10 |
container_start_page | 1218 |
container_title | American journal of respiratory and critical care medicine |
container_volume | 201 |
creator | Pellegrini, Mariangela Gudmundsson, Magni Bencze, Reka Segelsjö, Monica Freden, Filip Rylander, Christian Hedenstierna, Göran Larsson, Anders S Perchiazzi, Gaetano |
description | Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.
To assess whether external expiratory resistances
) affect expiratory diaphragmatic contraction during spontaneous breathing,
) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and
) reduce tidal atelectasis, preventing hyperinflation.
Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.
Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure),
) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%,
) expiratory flow was reduced and the expiratory time constants became more homogeneous, and
) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.
The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation. |
doi_str_mv | 10.1164/RCCM.201909-1690OC |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_gup_ub_gu_se_294266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404399197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhhdRbK3-AS9kwRsvunXysbvJZdl-wimVouJdmJOTrClnN2uysfbfm3ZrEaHg1QwzzzvMDG9RvCVwQEjDP1513cUBBSJBVqSRcNk9K3ZJzeqKyxae5xxaVnEuv-0Ur2K8BiBUEHhZ7DBKauAcdgt9_GtyAWcfbssrE12ccdQmlp-C-WnGufyrfeRw-h6wH8rOj3NAPTs_7pcnW39TrtzgZlwKOG7KVRr7jG23OEXzunhhcRvNm4e4V3w5Of7cnVWry9Pz7nBVac7ZXFFhNxZRAlpKDLGCNyBsywmhlFgtBIMNojCMUwRqsZYNW1tGJadGINdsr6iWufHGTGmtpuAGDLfKo1N9mlQu9UlFo-4kTZP5_Sf5I_f1UPnQq5QUZ0Ab9v84YfmejH9Y8Cn4H8nEWQ0uapNfMhqfoqKsrUVbs3v0_T_otU9hzL9SlANnUhLZZooulA4-xmDs4wYE1J0hVNB6UIsh1GKILHr3MDqtB7N5lPxxAPsNPGOybw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404399197</pqid></control><display><type>article</type><title>Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse</title><source>Freely Accessible Journals</source><source>PubMed Central Free</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>ProQuest - Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Pellegrini, Mariangela ; Gudmundsson, Magni ; Bencze, Reka ; Segelsjö, Monica ; Freden, Filip ; Rylander, Christian ; Hedenstierna, Göran ; Larsson, Anders S ; Perchiazzi, Gaetano</creator><creatorcontrib>Pellegrini, Mariangela ; Gudmundsson, Magni ; Bencze, Reka ; Segelsjö, Monica ; Freden, Filip ; Rylander, Christian ; Hedenstierna, Göran ; Larsson, Anders S ; Perchiazzi, Gaetano</creatorcontrib><description>Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.
To assess whether external expiratory resistances
) affect expiratory diaphragmatic contraction during spontaneous breathing,
) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and
) reduce tidal atelectasis, preventing hyperinflation.
Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.
Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure),
) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%,
) expiratory flow was reduced and the expiratory time constants became more homogeneous, and
) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.
The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.</description><identifier>ISSN: 1073-449X</identifier><identifier>ISSN: 1535-4970</identifier><identifier>ISSN: 2197-425X</identifier><identifier>EISSN: 1535-4970</identifier><identifier>EISSN: 2197-425X</identifier><identifier>DOI: 10.1164/RCCM.201909-1690OC</identifier><identifier>PMID: 32150440</identifier><language>eng</language><publisher>United States: American Thoracic Society</publisher><subject>acute respiratory distress syndrome ; Anestesi och intensivvård ; Anesthesiology and Intensive Care ; artificial respiration ; Cardiac and Cardiovascular Systems ; diaphragm ; Diaphragm (Anatomy) ; Hogs ; Kardiologi ; Lung diseases ; Lungs ; Muscular system ; pulmonary atelectasis ; Respiration</subject><ispartof>American journal of respiratory and critical care medicine, 2020-05, Vol.201 (10), p.1218-1229</ispartof><rights>Copyright American Thoracic Society May 10, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3</citedby><cites>FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3</cites><orcidid>0000-0001-5668-7399 ; 0000-0001-6834-6399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32150440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413443$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-430263$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/294266$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pellegrini, Mariangela</creatorcontrib><creatorcontrib>Gudmundsson, Magni</creatorcontrib><creatorcontrib>Bencze, Reka</creatorcontrib><creatorcontrib>Segelsjö, Monica</creatorcontrib><creatorcontrib>Freden, Filip</creatorcontrib><creatorcontrib>Rylander, Christian</creatorcontrib><creatorcontrib>Hedenstierna, Göran</creatorcontrib><creatorcontrib>Larsson, Anders S</creatorcontrib><creatorcontrib>Perchiazzi, Gaetano</creatorcontrib><title>Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse</title><title>American journal of respiratory and critical care medicine</title><addtitle>Am J Respir Crit Care Med</addtitle><description>Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.
To assess whether external expiratory resistances
) affect expiratory diaphragmatic contraction during spontaneous breathing,
) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and
) reduce tidal atelectasis, preventing hyperinflation.
Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.
Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure),
) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%,
) expiratory flow was reduced and the expiratory time constants became more homogeneous, and
) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.
The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.</description><subject>acute respiratory distress syndrome</subject><subject>Anestesi och intensivvård</subject><subject>Anesthesiology and Intensive Care</subject><subject>artificial respiration</subject><subject>Cardiac and Cardiovascular Systems</subject><subject>diaphragm</subject><subject>Diaphragm (Anatomy)</subject><subject>Hogs</subject><subject>Kardiologi</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Muscular system</subject><subject>pulmonary atelectasis</subject><subject>Respiration</subject><issn>1073-449X</issn><issn>1535-4970</issn><issn>2197-425X</issn><issn>1535-4970</issn><issn>2197-425X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkl1rFTEQhhdRbK3-AS9kwRsvunXysbvJZdl-wimVouJdmJOTrClnN2uysfbfm3ZrEaHg1QwzzzvMDG9RvCVwQEjDP1513cUBBSJBVqSRcNk9K3ZJzeqKyxae5xxaVnEuv-0Ur2K8BiBUEHhZ7DBKauAcdgt9_GtyAWcfbssrE12ccdQmlp-C-WnGufyrfeRw-h6wH8rOj3NAPTs_7pcnW39TrtzgZlwKOG7KVRr7jG23OEXzunhhcRvNm4e4V3w5Of7cnVWry9Pz7nBVac7ZXFFhNxZRAlpKDLGCNyBsywmhlFgtBIMNojCMUwRqsZYNW1tGJadGINdsr6iWufHGTGmtpuAGDLfKo1N9mlQu9UlFo-4kTZP5_Sf5I_f1UPnQq5QUZ0Ab9v84YfmejH9Y8Cn4H8nEWQ0uapNfMhqfoqKsrUVbs3v0_T_otU9hzL9SlANnUhLZZooulA4-xmDs4wYE1J0hVNB6UIsh1GKILHr3MDqtB7N5lPxxAPsNPGOybw</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Pellegrini, Mariangela</creator><creator>Gudmundsson, Magni</creator><creator>Bencze, Reka</creator><creator>Segelsjö, Monica</creator><creator>Freden, Filip</creator><creator>Rylander, Christian</creator><creator>Hedenstierna, Göran</creator><creator>Larsson, Anders S</creator><creator>Perchiazzi, Gaetano</creator><general>American Thoracic Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0001-5668-7399</orcidid><orcidid>https://orcid.org/0000-0001-6834-6399</orcidid></search><sort><creationdate>20200515</creationdate><title>Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse</title><author>Pellegrini, Mariangela ; Gudmundsson, Magni ; Bencze, Reka ; Segelsjö, Monica ; Freden, Filip ; Rylander, Christian ; Hedenstierna, Göran ; Larsson, Anders S ; Perchiazzi, Gaetano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acute respiratory distress syndrome</topic><topic>Anestesi och intensivvård</topic><topic>Anesthesiology and Intensive Care</topic><topic>artificial respiration</topic><topic>Cardiac and Cardiovascular Systems</topic><topic>diaphragm</topic><topic>Diaphragm (Anatomy)</topic><topic>Hogs</topic><topic>Kardiologi</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Muscular system</topic><topic>pulmonary atelectasis</topic><topic>Respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pellegrini, Mariangela</creatorcontrib><creatorcontrib>Gudmundsson, Magni</creatorcontrib><creatorcontrib>Bencze, Reka</creatorcontrib><creatorcontrib>Segelsjö, Monica</creatorcontrib><creatorcontrib>Freden, Filip</creatorcontrib><creatorcontrib>Rylander, Christian</creatorcontrib><creatorcontrib>Hedenstierna, Göran</creatorcontrib><creatorcontrib>Larsson, Anders S</creatorcontrib><creatorcontrib>Perchiazzi, Gaetano</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>American journal of respiratory and critical care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pellegrini, Mariangela</au><au>Gudmundsson, Magni</au><au>Bencze, Reka</au><au>Segelsjö, Monica</au><au>Freden, Filip</au><au>Rylander, Christian</au><au>Hedenstierna, Göran</au><au>Larsson, Anders S</au><au>Perchiazzi, Gaetano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse</atitle><jtitle>American journal of respiratory and critical care medicine</jtitle><addtitle>Am J Respir Crit Care Med</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>201</volume><issue>10</issue><spage>1218</spage><epage>1229</epage><pages>1218-1229</pages><issn>1073-449X</issn><issn>1535-4970</issn><issn>2197-425X</issn><eissn>1535-4970</eissn><eissn>2197-425X</eissn><abstract>Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.
To assess whether external expiratory resistances
) affect expiratory diaphragmatic contraction during spontaneous breathing,
) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and
) reduce tidal atelectasis, preventing hyperinflation.
Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.
Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure),
) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%,
) expiratory flow was reduced and the expiratory time constants became more homogeneous, and
) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.
The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.</abstract><cop>United States</cop><pub>American Thoracic Society</pub><pmid>32150440</pmid><doi>10.1164/RCCM.201909-1690OC</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5668-7399</orcidid><orcidid>https://orcid.org/0000-0001-6834-6399</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-449X |
ispartof | American journal of respiratory and critical care medicine, 2020-05, Vol.201 (10), p.1218-1229 |
issn | 1073-449X 1535-4970 2197-425X 1535-4970 2197-425X |
language | eng |
recordid | cdi_swepub_primary_oai_gup_ub_gu_se_294266 |
source | Freely Accessible Journals; PubMed Central Free; Springer Nature - SpringerLink Journals - Fully Open Access; ProQuest - Publicly Available Content Database; EZB Electronic Journals Library |
subjects | acute respiratory distress syndrome Anestesi och intensivvård Anesthesiology and Intensive Care artificial respiration Cardiac and Cardiovascular Systems diaphragm Diaphragm (Anatomy) Hogs Kardiologi Lung diseases Lungs Muscular system pulmonary atelectasis Respiration |
title | Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expiratory%20Resistances%20Prevent%20Expiratory%20Diaphragm%20Contraction,%20Flow%20Limitation,%20and%20Lung%20Collapse&rft.jtitle=American%20journal%20of%20respiratory%20and%20critical%20care%20medicine&rft.au=Pellegrini,%20Mariangela&rft.date=2020-05-15&rft.volume=201&rft.issue=10&rft.spage=1218&rft.epage=1229&rft.pages=1218-1229&rft.issn=1073-449X&rft.eissn=1535-4970&rft_id=info:doi/10.1164/RCCM.201909-1690OC&rft_dat=%3Cproquest_swepu%3E2404399197%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404399197&rft_id=info:pmid/32150440&rfr_iscdi=true |