Loading…

Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse

Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counte...

Full description

Saved in:
Bibliographic Details
Published in:American journal of respiratory and critical care medicine 2020-05, Vol.201 (10), p.1218-1229
Main Authors: Pellegrini, Mariangela, Gudmundsson, Magni, Bencze, Reka, Segelsjö, Monica, Freden, Filip, Rylander, Christian, Hedenstierna, Göran, Larsson, Anders S, Perchiazzi, Gaetano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3
cites cdi_FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3
container_end_page 1229
container_issue 10
container_start_page 1218
container_title American journal of respiratory and critical care medicine
container_volume 201
creator Pellegrini, Mariangela
Gudmundsson, Magni
Bencze, Reka
Segelsjö, Monica
Freden, Filip
Rylander, Christian
Hedenstierna, Göran
Larsson, Anders S
Perchiazzi, Gaetano
description Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL. To assess whether external expiratory resistances ) affect expiratory diaphragmatic contraction during spontaneous breathing, ) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and ) reduce tidal atelectasis, preventing hyperinflation. Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined. Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), ) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%, ) expiratory flow was reduced and the expiratory time constants became more homogeneous, and ) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation. The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.
doi_str_mv 10.1164/RCCM.201909-1690OC
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_gup_ub_gu_se_294266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404399197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhhdRbK3-AS9kwRsvunXysbvJZdl-wimVouJdmJOTrClnN2uysfbfm3ZrEaHg1QwzzzvMDG9RvCVwQEjDP1513cUBBSJBVqSRcNk9K3ZJzeqKyxae5xxaVnEuv-0Ur2K8BiBUEHhZ7DBKauAcdgt9_GtyAWcfbssrE12ccdQmlp-C-WnGufyrfeRw-h6wH8rOj3NAPTs_7pcnW39TrtzgZlwKOG7KVRr7jG23OEXzunhhcRvNm4e4V3w5Of7cnVWry9Pz7nBVac7ZXFFhNxZRAlpKDLGCNyBsywmhlFgtBIMNojCMUwRqsZYNW1tGJadGINdsr6iWufHGTGmtpuAGDLfKo1N9mlQu9UlFo-4kTZP5_Sf5I_f1UPnQq5QUZ0Ab9v84YfmejH9Y8Cn4H8nEWQ0uapNfMhqfoqKsrUVbs3v0_T_otU9hzL9SlANnUhLZZooulA4-xmDs4wYE1J0hVNB6UIsh1GKILHr3MDqtB7N5lPxxAPsNPGOybw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404399197</pqid></control><display><type>article</type><title>Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse</title><source>Freely Accessible Journals</source><source>PubMed Central Free</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>ProQuest - Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Pellegrini, Mariangela ; Gudmundsson, Magni ; Bencze, Reka ; Segelsjö, Monica ; Freden, Filip ; Rylander, Christian ; Hedenstierna, Göran ; Larsson, Anders S ; Perchiazzi, Gaetano</creator><creatorcontrib>Pellegrini, Mariangela ; Gudmundsson, Magni ; Bencze, Reka ; Segelsjö, Monica ; Freden, Filip ; Rylander, Christian ; Hedenstierna, Göran ; Larsson, Anders S ; Perchiazzi, Gaetano</creatorcontrib><description>Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL. To assess whether external expiratory resistances ) affect expiratory diaphragmatic contraction during spontaneous breathing, ) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and ) reduce tidal atelectasis, preventing hyperinflation. Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined. Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), ) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by &gt;10%, ) expiratory flow was reduced and the expiratory time constants became more homogeneous, and ) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation. The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.</description><identifier>ISSN: 1073-449X</identifier><identifier>ISSN: 1535-4970</identifier><identifier>ISSN: 2197-425X</identifier><identifier>EISSN: 1535-4970</identifier><identifier>EISSN: 2197-425X</identifier><identifier>DOI: 10.1164/RCCM.201909-1690OC</identifier><identifier>PMID: 32150440</identifier><language>eng</language><publisher>United States: American Thoracic Society</publisher><subject>acute respiratory distress syndrome ; Anestesi och intensivvård ; Anesthesiology and Intensive Care ; artificial respiration ; Cardiac and Cardiovascular Systems ; diaphragm ; Diaphragm (Anatomy) ; Hogs ; Kardiologi ; Lung diseases ; Lungs ; Muscular system ; pulmonary atelectasis ; Respiration</subject><ispartof>American journal of respiratory and critical care medicine, 2020-05, Vol.201 (10), p.1218-1229</ispartof><rights>Copyright American Thoracic Society May 10, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3</citedby><cites>FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3</cites><orcidid>0000-0001-5668-7399 ; 0000-0001-6834-6399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32150440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413443$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-430263$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/294266$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pellegrini, Mariangela</creatorcontrib><creatorcontrib>Gudmundsson, Magni</creatorcontrib><creatorcontrib>Bencze, Reka</creatorcontrib><creatorcontrib>Segelsjö, Monica</creatorcontrib><creatorcontrib>Freden, Filip</creatorcontrib><creatorcontrib>Rylander, Christian</creatorcontrib><creatorcontrib>Hedenstierna, Göran</creatorcontrib><creatorcontrib>Larsson, Anders S</creatorcontrib><creatorcontrib>Perchiazzi, Gaetano</creatorcontrib><title>Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse</title><title>American journal of respiratory and critical care medicine</title><addtitle>Am J Respir Crit Care Med</addtitle><description>Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL. To assess whether external expiratory resistances ) affect expiratory diaphragmatic contraction during spontaneous breathing, ) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and ) reduce tidal atelectasis, preventing hyperinflation. Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined. Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), ) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by &gt;10%, ) expiratory flow was reduced and the expiratory time constants became more homogeneous, and ) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation. The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.</description><subject>acute respiratory distress syndrome</subject><subject>Anestesi och intensivvård</subject><subject>Anesthesiology and Intensive Care</subject><subject>artificial respiration</subject><subject>Cardiac and Cardiovascular Systems</subject><subject>diaphragm</subject><subject>Diaphragm (Anatomy)</subject><subject>Hogs</subject><subject>Kardiologi</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Muscular system</subject><subject>pulmonary atelectasis</subject><subject>Respiration</subject><issn>1073-449X</issn><issn>1535-4970</issn><issn>2197-425X</issn><issn>1535-4970</issn><issn>2197-425X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkl1rFTEQhhdRbK3-AS9kwRsvunXysbvJZdl-wimVouJdmJOTrClnN2uysfbfm3ZrEaHg1QwzzzvMDG9RvCVwQEjDP1513cUBBSJBVqSRcNk9K3ZJzeqKyxae5xxaVnEuv-0Ur2K8BiBUEHhZ7DBKauAcdgt9_GtyAWcfbssrE12ccdQmlp-C-WnGufyrfeRw-h6wH8rOj3NAPTs_7pcnW39TrtzgZlwKOG7KVRr7jG23OEXzunhhcRvNm4e4V3w5Of7cnVWry9Pz7nBVac7ZXFFhNxZRAlpKDLGCNyBsywmhlFgtBIMNojCMUwRqsZYNW1tGJadGINdsr6iWufHGTGmtpuAGDLfKo1N9mlQu9UlFo-4kTZP5_Sf5I_f1UPnQq5QUZ0Ab9v84YfmejH9Y8Cn4H8nEWQ0uapNfMhqfoqKsrUVbs3v0_T_otU9hzL9SlANnUhLZZooulA4-xmDs4wYE1J0hVNB6UIsh1GKILHr3MDqtB7N5lPxxAPsNPGOybw</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Pellegrini, Mariangela</creator><creator>Gudmundsson, Magni</creator><creator>Bencze, Reka</creator><creator>Segelsjö, Monica</creator><creator>Freden, Filip</creator><creator>Rylander, Christian</creator><creator>Hedenstierna, Göran</creator><creator>Larsson, Anders S</creator><creator>Perchiazzi, Gaetano</creator><general>American Thoracic Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0001-5668-7399</orcidid><orcidid>https://orcid.org/0000-0001-6834-6399</orcidid></search><sort><creationdate>20200515</creationdate><title>Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse</title><author>Pellegrini, Mariangela ; Gudmundsson, Magni ; Bencze, Reka ; Segelsjö, Monica ; Freden, Filip ; Rylander, Christian ; Hedenstierna, Göran ; Larsson, Anders S ; Perchiazzi, Gaetano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acute respiratory distress syndrome</topic><topic>Anestesi och intensivvård</topic><topic>Anesthesiology and Intensive Care</topic><topic>artificial respiration</topic><topic>Cardiac and Cardiovascular Systems</topic><topic>diaphragm</topic><topic>Diaphragm (Anatomy)</topic><topic>Hogs</topic><topic>Kardiologi</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Muscular system</topic><topic>pulmonary atelectasis</topic><topic>Respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pellegrini, Mariangela</creatorcontrib><creatorcontrib>Gudmundsson, Magni</creatorcontrib><creatorcontrib>Bencze, Reka</creatorcontrib><creatorcontrib>Segelsjö, Monica</creatorcontrib><creatorcontrib>Freden, Filip</creatorcontrib><creatorcontrib>Rylander, Christian</creatorcontrib><creatorcontrib>Hedenstierna, Göran</creatorcontrib><creatorcontrib>Larsson, Anders S</creatorcontrib><creatorcontrib>Perchiazzi, Gaetano</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>American journal of respiratory and critical care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pellegrini, Mariangela</au><au>Gudmundsson, Magni</au><au>Bencze, Reka</au><au>Segelsjö, Monica</au><au>Freden, Filip</au><au>Rylander, Christian</au><au>Hedenstierna, Göran</au><au>Larsson, Anders S</au><au>Perchiazzi, Gaetano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse</atitle><jtitle>American journal of respiratory and critical care medicine</jtitle><addtitle>Am J Respir Crit Care Med</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>201</volume><issue>10</issue><spage>1218</spage><epage>1229</epage><pages>1218-1229</pages><issn>1073-449X</issn><issn>1535-4970</issn><issn>2197-425X</issn><eissn>1535-4970</eissn><eissn>2197-425X</eissn><abstract>Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL. To assess whether external expiratory resistances ) affect expiratory diaphragmatic contraction during spontaneous breathing, ) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and ) reduce tidal atelectasis, preventing hyperinflation. Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined. Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), ) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by &gt;10%, ) expiratory flow was reduced and the expiratory time constants became more homogeneous, and ) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation. The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.</abstract><cop>United States</cop><pub>American Thoracic Society</pub><pmid>32150440</pmid><doi>10.1164/RCCM.201909-1690OC</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5668-7399</orcidid><orcidid>https://orcid.org/0000-0001-6834-6399</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1073-449X
ispartof American journal of respiratory and critical care medicine, 2020-05, Vol.201 (10), p.1218-1229
issn 1073-449X
1535-4970
2197-425X
1535-4970
2197-425X
language eng
recordid cdi_swepub_primary_oai_gup_ub_gu_se_294266
source Freely Accessible Journals; PubMed Central Free; Springer Nature - SpringerLink Journals - Fully Open Access; ProQuest - Publicly Available Content Database; EZB Electronic Journals Library
subjects acute respiratory distress syndrome
Anestesi och intensivvård
Anesthesiology and Intensive Care
artificial respiration
Cardiac and Cardiovascular Systems
diaphragm
Diaphragm (Anatomy)
Hogs
Kardiologi
Lung diseases
Lungs
Muscular system
pulmonary atelectasis
Respiration
title Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expiratory%20Resistances%20Prevent%20Expiratory%20Diaphragm%20Contraction,%20Flow%20Limitation,%20and%20Lung%20Collapse&rft.jtitle=American%20journal%20of%20respiratory%20and%20critical%20care%20medicine&rft.au=Pellegrini,%20Mariangela&rft.date=2020-05-15&rft.volume=201&rft.issue=10&rft.spage=1218&rft.epage=1229&rft.pages=1218-1229&rft.issn=1073-449X&rft.eissn=1535-4970&rft_id=info:doi/10.1164/RCCM.201909-1690OC&rft_dat=%3Cproquest_swepu%3E2404399197%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-28fdfaa90af21e1f84608f7411221fc8830daa8e342a02fa5963bf32942e8a4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404399197&rft_id=info:pmid/32150440&rfr_iscdi=true