Loading…
Convergence rate of estimators of clustered panel models with misclassification
We study kmeans clustering estimation of panel data models with a latent group structure and N units and T time periods under long panel asymptotics. We show that the group-specific coefficients can be estimated at the parametric NT-rate even if error variances diverge as T→∞ and consequently some u...
Saved in:
Published in: | Economics letters 2021-06, Vol.203, p.109844, Article 109844 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-fef3bdd263d83a5b0b35d81fbf1ae95936bf4fef55ac28e53a070724e7a529253 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-fef3bdd263d83a5b0b35d81fbf1ae95936bf4fef55ac28e53a070724e7a529253 |
container_end_page | |
container_issue | |
container_start_page | 109844 |
container_title | Economics letters |
container_volume | 203 |
creator | Dzemski, Andreas Okui, Ryo |
description | We study kmeans clustering estimation of panel data models with a latent group structure and N units and T time periods under long panel asymptotics. We show that the group-specific coefficients can be estimated at the parametric NT-rate even if error variances diverge as T→∞ and consequently some units are asymptotically misclassified. This limit case approximates empirically relevant settings and is not covered by existing asymptotic results.
•New theoretical results for a stylized grouped panel model estimated by kmeans.•Some units exhibit large error variances and are possibly misclassified in the limit.•Nonetheless, group-specific coefficients are estimated at the root-NT rate. |
doi_str_mv | 10.1016/j.econlet.2021.109844 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_gup_ub_gu_se_305307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016517652100121X</els_id><sourcerecordid>2556878363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-fef3bdd263d83a5b0b35d81fbf1ae95936bf4fef55ac28e53a070724e7a529253</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKHguWs-mqY9iSx-wcJe9BzSdLJm6TY1SXfx35tS8eppmOGZl5kHoVuCVwST8n6_Au36DuKKYkrSrK6K4gwtSCVYLpgoztEicTwnouSX6CqEPcaE1oIv0Hbt-iP4HfQaMq8iZM5kEKI9qOh8mDrdjSGChzYbVA9ddnAtdCE72fiZHWzQnQrBGqtVtK6_RhdGdQFufusSfTw_va9f88325W39uMl1UYmYGzCsaVtasrZiije4YbytiGkMUVDzmpWNKRLEudK0As4UFljQAoTitKacLVE-54YTDGMjB58u9t_SKSt34yDTaDfKAJJhzrBI_N3MD959jelBuXej79OJknJeVqJiJUsUnyntXQgezF8uwXJyLffy17WcXMvZddp7mPeSGDha8DJoOyltrQcdZevsPwk_S0eMOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556878363</pqid></control><display><type>article</type><title>Convergence rate of estimators of clustered panel models with misclassification</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dzemski, Andreas ; Okui, Ryo</creator><creatorcontrib>Dzemski, Andreas ; Okui, Ryo</creatorcontrib><description>We study kmeans clustering estimation of panel data models with a latent group structure and N units and T time periods under long panel asymptotics. We show that the group-specific coefficients can be estimated at the parametric NT-rate even if error variances diverge as T→∞ and consequently some units are asymptotically misclassified. This limit case approximates empirically relevant settings and is not covered by existing asymptotic results.
•New theoretical results for a stylized grouped panel model estimated by kmeans.•Some units exhibit large error variances and are possibly misclassified in the limit.•Nonetheless, group-specific coefficients are estimated at the root-NT rate.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2021.109844</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Business & Economics ; Clustering ; Convergence ; Convergence rate ; Economics and Business ; Ekonomi och näringsliv ; Estimating techniques ; kmeans ; Latent grouped structure ; Misclassification ; Panel data ; rate</subject><ispartof>Economics letters, 2021-06, Vol.203, p.109844, Article 109844</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-fef3bdd263d83a5b0b35d81fbf1ae95936bf4fef55ac28e53a070724e7a529253</citedby><cites>FETCH-LOGICAL-c487t-fef3bdd263d83a5b0b35d81fbf1ae95936bf4fef55ac28e53a070724e7a529253</cites><orcidid>0000-0003-3524-9941 ; 0000-0001-9564-2505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902,33200</link.rule.ids><backlink>$$Uhttps://gup.ub.gu.se/publication/305307$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Dzemski, Andreas</creatorcontrib><creatorcontrib>Okui, Ryo</creatorcontrib><title>Convergence rate of estimators of clustered panel models with misclassification</title><title>Economics letters</title><description>We study kmeans clustering estimation of panel data models with a latent group structure and N units and T time periods under long panel asymptotics. We show that the group-specific coefficients can be estimated at the parametric NT-rate even if error variances diverge as T→∞ and consequently some units are asymptotically misclassified. This limit case approximates empirically relevant settings and is not covered by existing asymptotic results.
•New theoretical results for a stylized grouped panel model estimated by kmeans.•Some units exhibit large error variances and are possibly misclassified in the limit.•Nonetheless, group-specific coefficients are estimated at the root-NT rate.</description><subject>Asymptotic methods</subject><subject>Business & Economics</subject><subject>Clustering</subject><subject>Convergence</subject><subject>Convergence rate</subject><subject>Economics and Business</subject><subject>Ekonomi och näringsliv</subject><subject>Estimating techniques</subject><subject>kmeans</subject><subject>Latent grouped structure</subject><subject>Misclassification</subject><subject>Panel data</subject><subject>rate</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkE1LxDAQhoMouK7-BKHguWs-mqY9iSx-wcJe9BzSdLJm6TY1SXfx35tS8eppmOGZl5kHoVuCVwST8n6_Au36DuKKYkrSrK6K4gwtSCVYLpgoztEicTwnouSX6CqEPcaE1oIv0Hbt-iP4HfQaMq8iZM5kEKI9qOh8mDrdjSGChzYbVA9ddnAtdCE72fiZHWzQnQrBGqtVtK6_RhdGdQFufusSfTw_va9f88325W39uMl1UYmYGzCsaVtasrZiije4YbytiGkMUVDzmpWNKRLEudK0As4UFljQAoTitKacLVE-54YTDGMjB58u9t_SKSt34yDTaDfKAJJhzrBI_N3MD959jelBuXej79OJknJeVqJiJUsUnyntXQgezF8uwXJyLffy17WcXMvZddp7mPeSGDha8DJoOyltrQcdZevsPwk_S0eMOg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Dzemski, Andreas</creator><creator>Okui, Ryo</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0003-3524-9941</orcidid><orcidid>https://orcid.org/0000-0001-9564-2505</orcidid></search><sort><creationdate>20210601</creationdate><title>Convergence rate of estimators of clustered panel models with misclassification</title><author>Dzemski, Andreas ; Okui, Ryo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-fef3bdd263d83a5b0b35d81fbf1ae95936bf4fef55ac28e53a070724e7a529253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Business & Economics</topic><topic>Clustering</topic><topic>Convergence</topic><topic>Convergence rate</topic><topic>Economics and Business</topic><topic>Ekonomi och näringsliv</topic><topic>Estimating techniques</topic><topic>kmeans</topic><topic>Latent grouped structure</topic><topic>Misclassification</topic><topic>Panel data</topic><topic>rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dzemski, Andreas</creatorcontrib><creatorcontrib>Okui, Ryo</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dzemski, Andreas</au><au>Okui, Ryo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence rate of estimators of clustered panel models with misclassification</atitle><jtitle>Economics letters</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>203</volume><spage>109844</spage><pages>109844-</pages><artnum>109844</artnum><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>We study kmeans clustering estimation of panel data models with a latent group structure and N units and T time periods under long panel asymptotics. We show that the group-specific coefficients can be estimated at the parametric NT-rate even if error variances diverge as T→∞ and consequently some units are asymptotically misclassified. This limit case approximates empirically relevant settings and is not covered by existing asymptotic results.
•New theoretical results for a stylized grouped panel model estimated by kmeans.•Some units exhibit large error variances and are possibly misclassified in the limit.•Nonetheless, group-specific coefficients are estimated at the root-NT rate.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2021.109844</doi><orcidid>https://orcid.org/0000-0003-3524-9941</orcidid><orcidid>https://orcid.org/0000-0001-9564-2505</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1765 |
ispartof | Economics letters, 2021-06, Vol.203, p.109844, Article 109844 |
issn | 0165-1765 1873-7374 |
language | eng |
recordid | cdi_swepub_primary_oai_gup_ub_gu_se_305307 |
source | International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection 2022-2024 |
subjects | Asymptotic methods Business & Economics Clustering Convergence Convergence rate Economics and Business Ekonomi och näringsliv Estimating techniques kmeans Latent grouped structure Misclassification Panel data rate |
title | Convergence rate of estimators of clustered panel models with misclassification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20rate%20of%20estimators%20of%20clustered%20panel%20models%20with%20misclassification&rft.jtitle=Economics%20letters&rft.au=Dzemski,%20Andreas&rft.date=2021-06-01&rft.volume=203&rft.spage=109844&rft.pages=109844-&rft.artnum=109844&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2021.109844&rft_dat=%3Cproquest_swepu%3E2556878363%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-fef3bdd263d83a5b0b35d81fbf1ae95936bf4fef55ac28e53a070724e7a529253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556878363&rft_id=info:pmid/&rfr_iscdi=true |