Loading…
Localised astroglial dysfunction disrupts high-frequency EEG rhythms
We used cerebral cortex injections of fluorocitrate to determine if selective astrocytic disturbances affect the electroencephalogram (EEG). Rats were halothane-anaesthetized and 0.8 nmol of sodium fluorocitrate was injected into hindlimb (motor-sensory) cortex. Extra-dural EEG electrodes were impla...
Saved in:
Published in: | JOURNAL OF NEURAL TRANSMISSION 2005-02, Vol.112 (2), p.205-213 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We used cerebral cortex injections of fluorocitrate to determine if selective astrocytic disturbances affect the electroencephalogram (EEG). Rats were halothane-anaesthetized and 0.8 nmol of sodium fluorocitrate was injected into hindlimb (motor-sensory) cortex. Extra-dural EEG electrodes were implanted after which the anaesthesia was ceased. EEG was recorded at 1, 3, 5, 7, 24 and 48 hours. There was a broad-band reduction in frequencies in the EEG between 20 and 100 Hz commencing within 1 hour of injection and largely restricted to the side of injection and to frontal cortex, and maximal at 3 hours. Halothane had a suppressive effect on gamma power after citrate injection, but also prevented EEG suppression caused by fluorocitrate, consistent with the hypothesis that some of the action of fluorocitrate depended on gap-junctions. The findings are consistent with the hypothesis that primary astroglial dysfunction leads to reduced neuronal transmission and further supports gap-junctions as mediating fluorocitrate-induced astroglial effects. |
---|---|
ISSN: | 0300-9564 1435-1463 |
DOI: | 10.1007/s00702-004-0189-9 |