Loading…
Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates
To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the in vivo retinal l...
Saved in:
Published in: | Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2008-08, Vol.150 (4), p.395-403 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13 |
container_end_page | 403 |
container_issue | 4 |
container_start_page | 395 |
container_title | Comparative biochemistry and physiology. Part A, Molecular & integrative physiology |
container_volume | 150 |
creator | Stensløkken, Kåre-Olav Milton, Sarah L. Lutz, Peter L. Sundin, Lena Renshaw, Gillian M.C. Stecyk, Jonathan A.W. Nilsson, Göran E. |
description | To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the
in vivo retinal light response (electroretinogram; ERG) in three vertebrates that exhibit varying degrees of anoxia tolerance: freshwater turtle (
Trachemys scripta), epaulette shark (
Hemiscyllium ocellatum) and leopard frog (
Rana pipiens). A virtually total suppression of ERG in anoxia, probably resulting in functional blindness, has previously been seen in the extremely anoxia-tolerant crucian carp (
Carassius carassius). Surprisingly, the equally anoxia-tolerant turtle, which strongly depresses brain and whole-body metabolism during anoxia, exhibited a relatively modest anoxic reduction in ERG: the combined amplitude of turtle ERG waves was reduced by ~
50% after 2 h. In contrast, the shark b-wave amplitude practically disappeared after 30 min of severe hypoxia, and the frog b-wave was decreased by ~
75% after 40 min in anoxia. The specific A
1 adenosine receptor antagonist CPT significantly delayed the suppression of turtle ERG, while the hypoxic shark ERG was unaffected by the non-specific adenosine receptor antagonist aminophylline, suggesting adenosinergic involvement in turtle but not in shark. |
doi_str_mv | 10.1016/j.cbpa.2008.03.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_gup_ub_gu_se_96447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1095643308007800</els_id><sourcerecordid>69292920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiNERUvhD3BAOXEiYfwRJ5a4oKp8SBW9lLPl2OOtV9k42E4L_76OdgU3sA8ej555ZfmpqjcEWgJEfNi3Zlx0SwGGFlgLlD6rLkjHSMMZo89LDbJrRLmcVy9T2kNZnPAX1TkZul5yyi-q79fOocl1cLWewy-v6zDX-R5rnEo7hojZz2EX9WFD8n1EPIFNDhNGPef6AWPGMeqM6VV15vSU8PXpvKx-fL6-u_ra3Nx--Xb16aYxnNLcSNGB0ERao510vXVoB9MT0Q3MAEgLIIToJbMWSQfQd1Jy7rQjgjo7OsIuq_fH3PSIyzqqJfqDjr9V0F7t1kWV1m5VCZUUnPcFf3fElxh-rpiyOvhkcJr0jGFNSki6bfgvSCQfBmCigPQImhhSiuj-PIGA2uyovdrsqM2OAqaKnTL09pS-jge0f0dOOgrw8Qhg-bsHj1El43E2aH0sOpQN_l_5T264oT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19488036</pqid></control><display><type>article</type><title>Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates</title><source>ScienceDirect Journals</source><creator>Stensløkken, Kåre-Olav ; Milton, Sarah L. ; Lutz, Peter L. ; Sundin, Lena ; Renshaw, Gillian M.C. ; Stecyk, Jonathan A.W. ; Nilsson, Göran E.</creator><creatorcontrib>Stensløkken, Kåre-Olav ; Milton, Sarah L. ; Lutz, Peter L. ; Sundin, Lena ; Renshaw, Gillian M.C. ; Stecyk, Jonathan A.W. ; Nilsson, Göran E.</creatorcontrib><description>To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the
in vivo retinal light response (electroretinogram; ERG) in three vertebrates that exhibit varying degrees of anoxia tolerance: freshwater turtle (
Trachemys scripta), epaulette shark (
Hemiscyllium ocellatum) and leopard frog (
Rana pipiens). A virtually total suppression of ERG in anoxia, probably resulting in functional blindness, has previously been seen in the extremely anoxia-tolerant crucian carp (
Carassius carassius). Surprisingly, the equally anoxia-tolerant turtle, which strongly depresses brain and whole-body metabolism during anoxia, exhibited a relatively modest anoxic reduction in ERG: the combined amplitude of turtle ERG waves was reduced by ~
50% after 2 h. In contrast, the shark b-wave amplitude practically disappeared after 30 min of severe hypoxia, and the frog b-wave was decreased by ~
75% after 40 min in anoxia. The specific A
1 adenosine receptor antagonist CPT significantly delayed the suppression of turtle ERG, while the hypoxic shark ERG was unaffected by the non-specific adenosine receptor antagonist aminophylline, suggesting adenosinergic involvement in turtle but not in shark.</description><identifier>ISSN: 1095-6433</identifier><identifier>EISSN: 1531-4332</identifier><identifier>DOI: 10.1016/j.cbpa.2008.03.022</identifier><identifier>PMID: 18579424</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine ; Adenosine - metabolism ; Adenosine Triphosphate - metabolism ; Animals ; Biochemistry and Molecular Biology ; Biokemi och molekylärbiologi ; Brackish ; Carassius carassius ; Carps ; crucian carp ; Electroretinography - methods ; epaulette shark ; ERG ; evoked-potentials ; Freshwater ; Fysiologi ; Hemiscyllium ocellatum ; Hypoxia ; intracellular responses ; Marine ; Microbiology ; Mikrobiologi ; Models, Statistical ; Neurons - metabolism ; Oxygen - metabolism ; perfused eye ; phosphodiesterase inhibitors ; Physiology ; pigment epithelium ; Rana pipiens ; Ranidae ; Retina - metabolism ; retinal ischemia ; shark hemiscyllium-ocellatum ; Sharks ; Species Specificity ; Trachemys scripta ; turtle brain ; Turtles ; Vertebrates</subject><ispartof>Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2008-08, Vol.150 (4), p.395-403</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13</citedby><cites>FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18579424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/96447$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Stensløkken, Kåre-Olav</creatorcontrib><creatorcontrib>Milton, Sarah L.</creatorcontrib><creatorcontrib>Lutz, Peter L.</creatorcontrib><creatorcontrib>Sundin, Lena</creatorcontrib><creatorcontrib>Renshaw, Gillian M.C.</creatorcontrib><creatorcontrib>Stecyk, Jonathan A.W.</creatorcontrib><creatorcontrib>Nilsson, Göran E.</creatorcontrib><title>Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates</title><title>Comparative biochemistry and physiology. Part A, Molecular & integrative physiology</title><addtitle>Comp Biochem Physiol A Mol Integr Physiol</addtitle><description>To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the
in vivo retinal light response (electroretinogram; ERG) in three vertebrates that exhibit varying degrees of anoxia tolerance: freshwater turtle (
Trachemys scripta), epaulette shark (
Hemiscyllium ocellatum) and leopard frog (
Rana pipiens). A virtually total suppression of ERG in anoxia, probably resulting in functional blindness, has previously been seen in the extremely anoxia-tolerant crucian carp (
Carassius carassius). Surprisingly, the equally anoxia-tolerant turtle, which strongly depresses brain and whole-body metabolism during anoxia, exhibited a relatively modest anoxic reduction in ERG: the combined amplitude of turtle ERG waves was reduced by ~
50% after 2 h. In contrast, the shark b-wave amplitude practically disappeared after 30 min of severe hypoxia, and the frog b-wave was decreased by ~
75% after 40 min in anoxia. The specific A
1 adenosine receptor antagonist CPT significantly delayed the suppression of turtle ERG, while the hypoxic shark ERG was unaffected by the non-specific adenosine receptor antagonist aminophylline, suggesting adenosinergic involvement in turtle but not in shark.</description><subject>Adenosine</subject><subject>Adenosine - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Biochemistry and Molecular Biology</subject><subject>Biokemi och molekylärbiologi</subject><subject>Brackish</subject><subject>Carassius carassius</subject><subject>Carps</subject><subject>crucian carp</subject><subject>Electroretinography - methods</subject><subject>epaulette shark</subject><subject>ERG</subject><subject>evoked-potentials</subject><subject>Freshwater</subject><subject>Fysiologi</subject><subject>Hemiscyllium ocellatum</subject><subject>Hypoxia</subject><subject>intracellular responses</subject><subject>Marine</subject><subject>Microbiology</subject><subject>Mikrobiologi</subject><subject>Models, Statistical</subject><subject>Neurons - metabolism</subject><subject>Oxygen - metabolism</subject><subject>perfused eye</subject><subject>phosphodiesterase inhibitors</subject><subject>Physiology</subject><subject>pigment epithelium</subject><subject>Rana pipiens</subject><subject>Ranidae</subject><subject>Retina - metabolism</subject><subject>retinal ischemia</subject><subject>shark hemiscyllium-ocellatum</subject><subject>Sharks</subject><subject>Species Specificity</subject><subject>Trachemys scripta</subject><subject>turtle brain</subject><subject>Turtles</subject><subject>Vertebrates</subject><issn>1095-6433</issn><issn>1531-4332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiNERUvhD3BAOXEiYfwRJ5a4oKp8SBW9lLPl2OOtV9k42E4L_76OdgU3sA8ej555ZfmpqjcEWgJEfNi3Zlx0SwGGFlgLlD6rLkjHSMMZo89LDbJrRLmcVy9T2kNZnPAX1TkZul5yyi-q79fOocl1cLWewy-v6zDX-R5rnEo7hojZz2EX9WFD8n1EPIFNDhNGPef6AWPGMeqM6VV15vSU8PXpvKx-fL6-u_ra3Nx--Xb16aYxnNLcSNGB0ERao510vXVoB9MT0Q3MAEgLIIToJbMWSQfQd1Jy7rQjgjo7OsIuq_fH3PSIyzqqJfqDjr9V0F7t1kWV1m5VCZUUnPcFf3fElxh-rpiyOvhkcJr0jGFNSki6bfgvSCQfBmCigPQImhhSiuj-PIGA2uyovdrsqM2OAqaKnTL09pS-jge0f0dOOgrw8Qhg-bsHj1El43E2aH0sOpQN_l_5T264oT0</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Stensløkken, Kåre-Olav</creator><creator>Milton, Sarah L.</creator><creator>Lutz, Peter L.</creator><creator>Sundin, Lena</creator><creator>Renshaw, Gillian M.C.</creator><creator>Stecyk, Jonathan A.W.</creator><creator>Nilsson, Göran E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope></search><sort><creationdate>20080801</creationdate><title>Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates</title><author>Stensløkken, Kåre-Olav ; Milton, Sarah L. ; Lutz, Peter L. ; Sundin, Lena ; Renshaw, Gillian M.C. ; Stecyk, Jonathan A.W. ; Nilsson, Göran E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine</topic><topic>Adenosine - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Biochemistry and Molecular Biology</topic><topic>Biokemi och molekylärbiologi</topic><topic>Brackish</topic><topic>Carassius carassius</topic><topic>Carps</topic><topic>crucian carp</topic><topic>Electroretinography - methods</topic><topic>epaulette shark</topic><topic>ERG</topic><topic>evoked-potentials</topic><topic>Freshwater</topic><topic>Fysiologi</topic><topic>Hemiscyllium ocellatum</topic><topic>Hypoxia</topic><topic>intracellular responses</topic><topic>Marine</topic><topic>Microbiology</topic><topic>Mikrobiologi</topic><topic>Models, Statistical</topic><topic>Neurons - metabolism</topic><topic>Oxygen - metabolism</topic><topic>perfused eye</topic><topic>phosphodiesterase inhibitors</topic><topic>Physiology</topic><topic>pigment epithelium</topic><topic>Rana pipiens</topic><topic>Ranidae</topic><topic>Retina - metabolism</topic><topic>retinal ischemia</topic><topic>shark hemiscyllium-ocellatum</topic><topic>Sharks</topic><topic>Species Specificity</topic><topic>Trachemys scripta</topic><topic>turtle brain</topic><topic>Turtles</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stensløkken, Kåre-Olav</creatorcontrib><creatorcontrib>Milton, Sarah L.</creatorcontrib><creatorcontrib>Lutz, Peter L.</creatorcontrib><creatorcontrib>Sundin, Lena</creatorcontrib><creatorcontrib>Renshaw, Gillian M.C.</creatorcontrib><creatorcontrib>Stecyk, Jonathan A.W.</creatorcontrib><creatorcontrib>Nilsson, Göran E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Comparative biochemistry and physiology. Part A, Molecular & integrative physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stensløkken, Kåre-Olav</au><au>Milton, Sarah L.</au><au>Lutz, Peter L.</au><au>Sundin, Lena</au><au>Renshaw, Gillian M.C.</au><au>Stecyk, Jonathan A.W.</au><au>Nilsson, Göran E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates</atitle><jtitle>Comparative biochemistry and physiology. Part A, Molecular & integrative physiology</jtitle><addtitle>Comp Biochem Physiol A Mol Integr Physiol</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>150</volume><issue>4</issue><spage>395</spage><epage>403</epage><pages>395-403</pages><issn>1095-6433</issn><eissn>1531-4332</eissn><abstract>To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the
in vivo retinal light response (electroretinogram; ERG) in three vertebrates that exhibit varying degrees of anoxia tolerance: freshwater turtle (
Trachemys scripta), epaulette shark (
Hemiscyllium ocellatum) and leopard frog (
Rana pipiens). A virtually total suppression of ERG in anoxia, probably resulting in functional blindness, has previously been seen in the extremely anoxia-tolerant crucian carp (
Carassius carassius). Surprisingly, the equally anoxia-tolerant turtle, which strongly depresses brain and whole-body metabolism during anoxia, exhibited a relatively modest anoxic reduction in ERG: the combined amplitude of turtle ERG waves was reduced by ~
50% after 2 h. In contrast, the shark b-wave amplitude practically disappeared after 30 min of severe hypoxia, and the frog b-wave was decreased by ~
75% after 40 min in anoxia. The specific A
1 adenosine receptor antagonist CPT significantly delayed the suppression of turtle ERG, while the hypoxic shark ERG was unaffected by the non-specific adenosine receptor antagonist aminophylline, suggesting adenosinergic involvement in turtle but not in shark.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18579424</pmid><doi>10.1016/j.cbpa.2008.03.022</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1095-6433 |
ispartof | Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2008-08, Vol.150 (4), p.395-403 |
issn | 1095-6433 1531-4332 |
language | eng |
recordid | cdi_swepub_primary_oai_gup_ub_gu_se_96447 |
source | ScienceDirect Journals |
subjects | Adenosine Adenosine - metabolism Adenosine Triphosphate - metabolism Animals Biochemistry and Molecular Biology Biokemi och molekylärbiologi Brackish Carassius carassius Carps crucian carp Electroretinography - methods epaulette shark ERG evoked-potentials Freshwater Fysiologi Hemiscyllium ocellatum Hypoxia intracellular responses Marine Microbiology Mikrobiologi Models, Statistical Neurons - metabolism Oxygen - metabolism perfused eye phosphodiesterase inhibitors Physiology pigment epithelium Rana pipiens Ranidae Retina - metabolism retinal ischemia shark hemiscyllium-ocellatum Sharks Species Specificity Trachemys scripta turtle brain Turtles Vertebrates |
title | Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20anoxia%20on%20the%20electroretinogram%20of%20three%20anoxia-tolerant%20vertebrates&rft.jtitle=Comparative%20biochemistry%20and%20physiology.%20Part%20A,%20Molecular%20&%20integrative%20physiology&rft.au=Stensl%C3%B8kken,%20K%C3%A5re-Olav&rft.date=2008-08-01&rft.volume=150&rft.issue=4&rft.spage=395&rft.epage=403&rft.pages=395-403&rft.issn=1095-6433&rft.eissn=1531-4332&rft_id=info:doi/10.1016/j.cbpa.2008.03.022&rft_dat=%3Cproquest_swepu%3E69292920%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19488036&rft_id=info:pmid/18579424&rfr_iscdi=true |