Loading…

Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates

To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the in vivo retinal l...

Full description

Saved in:
Bibliographic Details
Published in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2008-08, Vol.150 (4), p.395-403
Main Authors: Stensløkken, Kåre-Olav, Milton, Sarah L., Lutz, Peter L., Sundin, Lena, Renshaw, Gillian M.C., Stecyk, Jonathan A.W., Nilsson, Göran E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13
cites cdi_FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13
container_end_page 403
container_issue 4
container_start_page 395
container_title Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
container_volume 150
creator Stensløkken, Kåre-Olav
Milton, Sarah L.
Lutz, Peter L.
Sundin, Lena
Renshaw, Gillian M.C.
Stecyk, Jonathan A.W.
Nilsson, Göran E.
description To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the in vivo retinal light response (electroretinogram; ERG) in three vertebrates that exhibit varying degrees of anoxia tolerance: freshwater turtle ( Trachemys scripta), epaulette shark ( Hemiscyllium ocellatum) and leopard frog ( Rana pipiens). A virtually total suppression of ERG in anoxia, probably resulting in functional blindness, has previously been seen in the extremely anoxia-tolerant crucian carp ( Carassius carassius). Surprisingly, the equally anoxia-tolerant turtle, which strongly depresses brain and whole-body metabolism during anoxia, exhibited a relatively modest anoxic reduction in ERG: the combined amplitude of turtle ERG waves was reduced by ~ 50% after 2 h. In contrast, the shark b-wave amplitude practically disappeared after 30 min of severe hypoxia, and the frog b-wave was decreased by ~ 75% after 40 min in anoxia. The specific A 1 adenosine receptor antagonist CPT significantly delayed the suppression of turtle ERG, while the hypoxic shark ERG was unaffected by the non-specific adenosine receptor antagonist aminophylline, suggesting adenosinergic involvement in turtle but not in shark.
doi_str_mv 10.1016/j.cbpa.2008.03.022
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_gup_ub_gu_se_96447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1095643308007800</els_id><sourcerecordid>69292920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiNERUvhD3BAOXEiYfwRJ5a4oKp8SBW9lLPl2OOtV9k42E4L_76OdgU3sA8ej555ZfmpqjcEWgJEfNi3Zlx0SwGGFlgLlD6rLkjHSMMZo89LDbJrRLmcVy9T2kNZnPAX1TkZul5yyi-q79fOocl1cLWewy-v6zDX-R5rnEo7hojZz2EX9WFD8n1EPIFNDhNGPef6AWPGMeqM6VV15vSU8PXpvKx-fL6-u_ra3Nx--Xb16aYxnNLcSNGB0ERao510vXVoB9MT0Q3MAEgLIIToJbMWSQfQd1Jy7rQjgjo7OsIuq_fH3PSIyzqqJfqDjr9V0F7t1kWV1m5VCZUUnPcFf3fElxh-rpiyOvhkcJr0jGFNSki6bfgvSCQfBmCigPQImhhSiuj-PIGA2uyovdrsqM2OAqaKnTL09pS-jge0f0dOOgrw8Qhg-bsHj1El43E2aH0sOpQN_l_5T264oT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19488036</pqid></control><display><type>article</type><title>Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates</title><source>ScienceDirect Journals</source><creator>Stensløkken, Kåre-Olav ; Milton, Sarah L. ; Lutz, Peter L. ; Sundin, Lena ; Renshaw, Gillian M.C. ; Stecyk, Jonathan A.W. ; Nilsson, Göran E.</creator><creatorcontrib>Stensløkken, Kåre-Olav ; Milton, Sarah L. ; Lutz, Peter L. ; Sundin, Lena ; Renshaw, Gillian M.C. ; Stecyk, Jonathan A.W. ; Nilsson, Göran E.</creatorcontrib><description>To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the in vivo retinal light response (electroretinogram; ERG) in three vertebrates that exhibit varying degrees of anoxia tolerance: freshwater turtle ( Trachemys scripta), epaulette shark ( Hemiscyllium ocellatum) and leopard frog ( Rana pipiens). A virtually total suppression of ERG in anoxia, probably resulting in functional blindness, has previously been seen in the extremely anoxia-tolerant crucian carp ( Carassius carassius). Surprisingly, the equally anoxia-tolerant turtle, which strongly depresses brain and whole-body metabolism during anoxia, exhibited a relatively modest anoxic reduction in ERG: the combined amplitude of turtle ERG waves was reduced by ~ 50% after 2 h. In contrast, the shark b-wave amplitude practically disappeared after 30 min of severe hypoxia, and the frog b-wave was decreased by ~ 75% after 40 min in anoxia. The specific A 1 adenosine receptor antagonist CPT significantly delayed the suppression of turtle ERG, while the hypoxic shark ERG was unaffected by the non-specific adenosine receptor antagonist aminophylline, suggesting adenosinergic involvement in turtle but not in shark.</description><identifier>ISSN: 1095-6433</identifier><identifier>EISSN: 1531-4332</identifier><identifier>DOI: 10.1016/j.cbpa.2008.03.022</identifier><identifier>PMID: 18579424</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine ; Adenosine - metabolism ; Adenosine Triphosphate - metabolism ; Animals ; Biochemistry and Molecular Biology ; Biokemi och molekylärbiologi ; Brackish ; Carassius carassius ; Carps ; crucian carp ; Electroretinography - methods ; epaulette shark ; ERG ; evoked-potentials ; Freshwater ; Fysiologi ; Hemiscyllium ocellatum ; Hypoxia ; intracellular responses ; Marine ; Microbiology ; Mikrobiologi ; Models, Statistical ; Neurons - metabolism ; Oxygen - metabolism ; perfused eye ; phosphodiesterase inhibitors ; Physiology ; pigment epithelium ; Rana pipiens ; Ranidae ; Retina - metabolism ; retinal ischemia ; shark hemiscyllium-ocellatum ; Sharks ; Species Specificity ; Trachemys scripta ; turtle brain ; Turtles ; Vertebrates</subject><ispartof>Comparative biochemistry and physiology. Part A, Molecular &amp; integrative physiology, 2008-08, Vol.150 (4), p.395-403</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13</citedby><cites>FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18579424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/96447$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Stensløkken, Kåre-Olav</creatorcontrib><creatorcontrib>Milton, Sarah L.</creatorcontrib><creatorcontrib>Lutz, Peter L.</creatorcontrib><creatorcontrib>Sundin, Lena</creatorcontrib><creatorcontrib>Renshaw, Gillian M.C.</creatorcontrib><creatorcontrib>Stecyk, Jonathan A.W.</creatorcontrib><creatorcontrib>Nilsson, Göran E.</creatorcontrib><title>Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates</title><title>Comparative biochemistry and physiology. Part A, Molecular &amp; integrative physiology</title><addtitle>Comp Biochem Physiol A Mol Integr Physiol</addtitle><description>To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the in vivo retinal light response (electroretinogram; ERG) in three vertebrates that exhibit varying degrees of anoxia tolerance: freshwater turtle ( Trachemys scripta), epaulette shark ( Hemiscyllium ocellatum) and leopard frog ( Rana pipiens). A virtually total suppression of ERG in anoxia, probably resulting in functional blindness, has previously been seen in the extremely anoxia-tolerant crucian carp ( Carassius carassius). Surprisingly, the equally anoxia-tolerant turtle, which strongly depresses brain and whole-body metabolism during anoxia, exhibited a relatively modest anoxic reduction in ERG: the combined amplitude of turtle ERG waves was reduced by ~ 50% after 2 h. In contrast, the shark b-wave amplitude practically disappeared after 30 min of severe hypoxia, and the frog b-wave was decreased by ~ 75% after 40 min in anoxia. The specific A 1 adenosine receptor antagonist CPT significantly delayed the suppression of turtle ERG, while the hypoxic shark ERG was unaffected by the non-specific adenosine receptor antagonist aminophylline, suggesting adenosinergic involvement in turtle but not in shark.</description><subject>Adenosine</subject><subject>Adenosine - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Biochemistry and Molecular Biology</subject><subject>Biokemi och molekylärbiologi</subject><subject>Brackish</subject><subject>Carassius carassius</subject><subject>Carps</subject><subject>crucian carp</subject><subject>Electroretinography - methods</subject><subject>epaulette shark</subject><subject>ERG</subject><subject>evoked-potentials</subject><subject>Freshwater</subject><subject>Fysiologi</subject><subject>Hemiscyllium ocellatum</subject><subject>Hypoxia</subject><subject>intracellular responses</subject><subject>Marine</subject><subject>Microbiology</subject><subject>Mikrobiologi</subject><subject>Models, Statistical</subject><subject>Neurons - metabolism</subject><subject>Oxygen - metabolism</subject><subject>perfused eye</subject><subject>phosphodiesterase inhibitors</subject><subject>Physiology</subject><subject>pigment epithelium</subject><subject>Rana pipiens</subject><subject>Ranidae</subject><subject>Retina - metabolism</subject><subject>retinal ischemia</subject><subject>shark hemiscyllium-ocellatum</subject><subject>Sharks</subject><subject>Species Specificity</subject><subject>Trachemys scripta</subject><subject>turtle brain</subject><subject>Turtles</subject><subject>Vertebrates</subject><issn>1095-6433</issn><issn>1531-4332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiNERUvhD3BAOXEiYfwRJ5a4oKp8SBW9lLPl2OOtV9k42E4L_76OdgU3sA8ej555ZfmpqjcEWgJEfNi3Zlx0SwGGFlgLlD6rLkjHSMMZo89LDbJrRLmcVy9T2kNZnPAX1TkZul5yyi-q79fOocl1cLWewy-v6zDX-R5rnEo7hojZz2EX9WFD8n1EPIFNDhNGPef6AWPGMeqM6VV15vSU8PXpvKx-fL6-u_ra3Nx--Xb16aYxnNLcSNGB0ERao510vXVoB9MT0Q3MAEgLIIToJbMWSQfQd1Jy7rQjgjo7OsIuq_fH3PSIyzqqJfqDjr9V0F7t1kWV1m5VCZUUnPcFf3fElxh-rpiyOvhkcJr0jGFNSki6bfgvSCQfBmCigPQImhhSiuj-PIGA2uyovdrsqM2OAqaKnTL09pS-jge0f0dOOgrw8Qhg-bsHj1El43E2aH0sOpQN_l_5T264oT0</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Stensløkken, Kåre-Olav</creator><creator>Milton, Sarah L.</creator><creator>Lutz, Peter L.</creator><creator>Sundin, Lena</creator><creator>Renshaw, Gillian M.C.</creator><creator>Stecyk, Jonathan A.W.</creator><creator>Nilsson, Göran E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope></search><sort><creationdate>20080801</creationdate><title>Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates</title><author>Stensløkken, Kåre-Olav ; Milton, Sarah L. ; Lutz, Peter L. ; Sundin, Lena ; Renshaw, Gillian M.C. ; Stecyk, Jonathan A.W. ; Nilsson, Göran E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine</topic><topic>Adenosine - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Biochemistry and Molecular Biology</topic><topic>Biokemi och molekylärbiologi</topic><topic>Brackish</topic><topic>Carassius carassius</topic><topic>Carps</topic><topic>crucian carp</topic><topic>Electroretinography - methods</topic><topic>epaulette shark</topic><topic>ERG</topic><topic>evoked-potentials</topic><topic>Freshwater</topic><topic>Fysiologi</topic><topic>Hemiscyllium ocellatum</topic><topic>Hypoxia</topic><topic>intracellular responses</topic><topic>Marine</topic><topic>Microbiology</topic><topic>Mikrobiologi</topic><topic>Models, Statistical</topic><topic>Neurons - metabolism</topic><topic>Oxygen - metabolism</topic><topic>perfused eye</topic><topic>phosphodiesterase inhibitors</topic><topic>Physiology</topic><topic>pigment epithelium</topic><topic>Rana pipiens</topic><topic>Ranidae</topic><topic>Retina - metabolism</topic><topic>retinal ischemia</topic><topic>shark hemiscyllium-ocellatum</topic><topic>Sharks</topic><topic>Species Specificity</topic><topic>Trachemys scripta</topic><topic>turtle brain</topic><topic>Turtles</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stensløkken, Kåre-Olav</creatorcontrib><creatorcontrib>Milton, Sarah L.</creatorcontrib><creatorcontrib>Lutz, Peter L.</creatorcontrib><creatorcontrib>Sundin, Lena</creatorcontrib><creatorcontrib>Renshaw, Gillian M.C.</creatorcontrib><creatorcontrib>Stecyk, Jonathan A.W.</creatorcontrib><creatorcontrib>Nilsson, Göran E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Comparative biochemistry and physiology. Part A, Molecular &amp; integrative physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stensløkken, Kåre-Olav</au><au>Milton, Sarah L.</au><au>Lutz, Peter L.</au><au>Sundin, Lena</au><au>Renshaw, Gillian M.C.</au><au>Stecyk, Jonathan A.W.</au><au>Nilsson, Göran E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates</atitle><jtitle>Comparative biochemistry and physiology. Part A, Molecular &amp; integrative physiology</jtitle><addtitle>Comp Biochem Physiol A Mol Integr Physiol</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>150</volume><issue>4</issue><spage>395</spage><epage>403</epage><pages>395-403</pages><issn>1095-6433</issn><eissn>1531-4332</eissn><abstract>To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the in vivo retinal light response (electroretinogram; ERG) in three vertebrates that exhibit varying degrees of anoxia tolerance: freshwater turtle ( Trachemys scripta), epaulette shark ( Hemiscyllium ocellatum) and leopard frog ( Rana pipiens). A virtually total suppression of ERG in anoxia, probably resulting in functional blindness, has previously been seen in the extremely anoxia-tolerant crucian carp ( Carassius carassius). Surprisingly, the equally anoxia-tolerant turtle, which strongly depresses brain and whole-body metabolism during anoxia, exhibited a relatively modest anoxic reduction in ERG: the combined amplitude of turtle ERG waves was reduced by ~ 50% after 2 h. In contrast, the shark b-wave amplitude practically disappeared after 30 min of severe hypoxia, and the frog b-wave was decreased by ~ 75% after 40 min in anoxia. The specific A 1 adenosine receptor antagonist CPT significantly delayed the suppression of turtle ERG, while the hypoxic shark ERG was unaffected by the non-specific adenosine receptor antagonist aminophylline, suggesting adenosinergic involvement in turtle but not in shark.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18579424</pmid><doi>10.1016/j.cbpa.2008.03.022</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1095-6433
ispartof Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2008-08, Vol.150 (4), p.395-403
issn 1095-6433
1531-4332
language eng
recordid cdi_swepub_primary_oai_gup_ub_gu_se_96447
source ScienceDirect Journals
subjects Adenosine
Adenosine - metabolism
Adenosine Triphosphate - metabolism
Animals
Biochemistry and Molecular Biology
Biokemi och molekylärbiologi
Brackish
Carassius carassius
Carps
crucian carp
Electroretinography - methods
epaulette shark
ERG
evoked-potentials
Freshwater
Fysiologi
Hemiscyllium ocellatum
Hypoxia
intracellular responses
Marine
Microbiology
Mikrobiologi
Models, Statistical
Neurons - metabolism
Oxygen - metabolism
perfused eye
phosphodiesterase inhibitors
Physiology
pigment epithelium
Rana pipiens
Ranidae
Retina - metabolism
retinal ischemia
shark hemiscyllium-ocellatum
Sharks
Species Specificity
Trachemys scripta
turtle brain
Turtles
Vertebrates
title Effect of anoxia on the electroretinogram of three anoxia-tolerant vertebrates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20anoxia%20on%20the%20electroretinogram%20of%20three%20anoxia-tolerant%20vertebrates&rft.jtitle=Comparative%20biochemistry%20and%20physiology.%20Part%20A,%20Molecular%20&%20integrative%20physiology&rft.au=Stensl%C3%B8kken,%20K%C3%A5re-Olav&rft.date=2008-08-01&rft.volume=150&rft.issue=4&rft.spage=395&rft.epage=403&rft.pages=395-403&rft.issn=1095-6433&rft.eissn=1531-4332&rft_id=info:doi/10.1016/j.cbpa.2008.03.022&rft_dat=%3Cproquest_swepu%3E69292920%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-96506a19dcaf9f7dfed8c716583c009d00666793dde1500759944faf162fdbf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19488036&rft_id=info:pmid/18579424&rfr_iscdi=true