Loading…
Tumour suppressor p16(INK4a) - anoikis-favouring decrease in N/O-glycan/cell surface sialylation by down-regulation of enzymes in sialic acid biosynthesis in tandem in a pancreatic carcinoma model
Tumour suppressor p16(INK4a) is known to exert cell-cycle control via cyclin-dependent kinases. An emerging aspect of its functionality is the orchestrated modulation of N/O-glycosylation and galectin expression to induce anoikis in human Capan-1 pancreatic carcinoma cells. Using chemoselective N/O-...
Saved in:
Published in: | The FEBS journal 2012-11, Vol.279 (21), p.4062-4080 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tumour suppressor p16(INK4a) is known to exert cell-cycle control via cyclin-dependent kinases. An emerging aspect of its functionality is the orchestrated modulation of N/O-glycosylation and galectin expression to induce anoikis in human Capan-1 pancreatic carcinoma cells. Using chemoselective N/O-glycan enrichment technology (glycoblotting) and product characterization, we first verified a substantial decrease in sialylation. Tests combining genetic (i.e. transfection with α2,6-sialyltransferase-specific cDNA) or metabolic (i.e. medium supplementation with N-acetylmannosamine to track down a bottleneck in sialic acid biosynthesis) engineering with cytofluorometric analysis of lectin binding indicated a role of limited substrate availability, especially for α2,6-sialylation, which switches off reactivity for anoikis-triggering homodimeric galectin-1. Quantitative MS analysis of protein level changes confirmed an enhanced galectin-1 presence along with an influence on glycosyltransferases (β1,4-galactosyltransferase-IV, α2,3-sialyltransferase-I) and detected p16(INK4a) -dependent down-regulation of two enzymes in the biosynthesis pathway for sialic acid [i.e. the bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) and N-acetylneuraminic acid 9-phosphate synthase] (P |
---|---|
ISSN: | 1742-4658 1742-4658 |
DOI: | 10.1111/febs.12001 |