Loading…

Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these product...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2014-12, Vol.767, p.34-40
Main Authors: Rescigno, R., Finck, Ch, Juliani, D., Spiriti, E., Baudot, J., Abou-Haidar, Z., Agodi, C., Alvarez, M.A.G., Aumann, T., Battistoni, G., Bocci, A., Böhlen, T.T., Boudard, A., Brunetti, A., Carpinelli, M., Cirrone, G.A.P., Cortes-Giraldo, M.A., Cuttone, G., De Napoli, M., Durante, M., Gallardo, M.I., Golosio, B., Iarocci, E., Iazzi, F., Ickert, G., Introzzi, R., Krimmer, J., Kurz, N., Labalme, M., Leifels, Y., Le Fevre, A., Leray, S., Marchetto, F., Monaco, V., Morone, M.C., Oliva, P., Paoloni, A., Patera, V., Piersanti, L., Pleskac, R., Quesada, J.M., Randazzo, N., Romano, F., Rossi, D., Rousseau, M., Sacchi, R., Sala, P., Sarti, A., Scheidenberger, C., Schuy, C., Sciubba, A., Sfienti, C., Simon, H., Sipala, V., Tropea, S., Vanstalle, M., Younis, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.
ISSN:0168-9002
1872-9576
1872-9576
DOI:10.1016/j.nima.2014.08.024