Loading…

Estrogen receptor beta reduces colon cancer metastasis through a novel miR-205 - PROX1 mechanism

Colon cancer is a common cause of cancer death in the Western world. Accumulating evidence supports a protective role of estrogen via estrogen receptor beta (ERβ) but the mechanism of action is not known. Here, we elucidate a molecular mechanism whereby ERβ represses the oncogenic prospero homebox 1...

Full description

Saved in:
Bibliographic Details
Published in:Oncotarget 2016-07, Vol.7 (27), p.42159-42171
Main Authors: Nguyen-Vu, Trang, Wang, Jun, Mesmar, Fahmi, Mukhopadhyay, Srijita, Saxena, Ashish, McCollum, Catherine W, Gustafsson, Jan-Åke, Bondesson, Maria, Williams, Cecilia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Colon cancer is a common cause of cancer death in the Western world. Accumulating evidence supports a protective role of estrogen via estrogen receptor beta (ERβ) but the mechanism of action is not known. Here, we elucidate a molecular mechanism whereby ERβ represses the oncogenic prospero homebox 1 (PROX1) through the upregulation of miR-205. We show that PROX1 is a potential target of miR-205 and that in clinical specimens from The Cancer Genome Atlas data, ERβ and miR-205 are decreased in colorectal cancer tissue compared to non-tumorous colon, while PROX1 levels are increased. Through mechanistic studies in multiple colorectal cancer cell lines, we show that ERβ upregulates miR-205, and that miR-205 targets and represses PROX1 through direct interaction with its 3'UTR. Through the generation of intestine-specific ERβ knockout mice, we establish that this pathway is correspondingly regulated in normal intestinal epithelial cells in vivo. Functionally, we demonstrate that miR-205 decreases cell proliferation and decreases migratory and invasive potential of colon cancer cells, leading to a reduction of micrometastasis in vivo. In conclusion, ERβ in both normal and cancerous colon epithelial cells upregulates miRNA-205, which subsequently reduces PROX1 through direct interaction with its 3'UTR. This results in reduced proliferative and metastatic potential of the cells. Our study proposes a novel pathway that may be exploited using ERβ-selective agonists and/or miR-205-replacement therapy in order to improve preventive and therapeutic approaches against colon cancer.
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.9895