Loading…
Neuroprotection by selective nitric oxide synthase inhibition at 24 hours after perinatal hypoxia-ischemia
Perinatal hypoxia-ischemia is a major cause of neonatal morbidity and mortality. Until now no established neuroprotective intervention after perinatal hypoxia-ischemia has been available. The delay in cell death after perinatal hypoxia-ischemia creates possibilities for therapeutic intervention afte...
Saved in:
Published in: | Stroke (1970) 2002-09, Vol.33 (9), p.2304-2310 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Perinatal hypoxia-ischemia is a major cause of neonatal morbidity and mortality. Until now no established neuroprotective intervention after perinatal hypoxia-ischemia has been available. The delay in cell death after perinatal hypoxia-ischemia creates possibilities for therapeutic intervention after the initial insult. Excessive nitric oxide and reactive oxygen species generated on hypoxia-ischemia and reperfusion play a key role in the neurotoxic cascade. The present study examines the neuroprotective properties of neuronal and inducible but not endothelial nitric oxide synthase inhibition by 2-iminobiotin in a piglet model of perinatal hypoxia-ischemia.
Twenty-three newborn piglets were subjected to 60 minutes of hypoxia-ischemia, followed by 24 hours of reperfusion and reoxygenation. Five additional piglets served as sham-operated controls. On reperfusion, piglets were randomly treated with either vehicle (n=12) or 2-iminobiotin (n=11). At 24 hours after hypoxia-ischemia, the cerebral energy state, presence of vasogenic edema, amount of apparently normal neuronal cells, caspase-3 activity, amount of terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL)-positive cells, and degree of tyrosine nitration were assessed.
A 90% improvement in cerebral energy state, 90% reduction in vasogenic edema, and 60% to 80% reduction in apoptosis-related neuronal cell death were demonstrated in 2-iminobiotin-treated piglets at 24 hours after hypoxia- ischemia. A significant reduction in tyrosine nitration in the cerebral cortex was observed in 2-iminobiotin-treated piglets, indicating decreased formation of reactive nitrogen species.
Simultaneous and selective inhibition of neuronal and inducible nitric oxide synthase by 2-iminobiotin is a promising strategy for neuroprotection after perinatal hypoxia-ischemia. |
---|---|
ISSN: | 0039-2499 1524-4628 1524-4628 |
DOI: | 10.1161/01.STR.0000028343.25901.09 |