Loading…

Motion sickness increases the risk of accidental hypothermia

Motion sickness (MS) has been found to increase body-core cooling during immersion in 28 degrees C water, an effect ascribed to attenuation of the cold-induced peripheral vasoconstriction (Mekjavic et al. in J Physiol 535(2):619-623, 2001). The present study tested the hypothesis that a more profoun...

Full description

Saved in:
Bibliographic Details
Published in:European journal of applied physiology 2006-09, Vol.98 (1), p.48-55
Main Authors: Nobel, Gerard, Eiken, Ola, Tribukait, Arne, Kölegård, Roger, Mekjavic, Igor B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motion sickness (MS) has been found to increase body-core cooling during immersion in 28 degrees C water, an effect ascribed to attenuation of the cold-induced peripheral vasoconstriction (Mekjavic et al. in J Physiol 535(2):619-623, 2001). The present study tested the hypothesis that a more profound cold stimulus would override the MS effect on peripheral vasoconstriction and hence on the core cooling rate. Eleven healthy subjects underwent two separate head-out immersions in 15 degrees C water. In the control trial (CN), subjects were immersed after baseline measurements. In the MS-trial, subjects were rendered motion sick prior to immersion, by using a rotating chair in combination with a regimen of standardized head movements. During immersion in the MS-trial, subjects were exposed to an optokinetic stimulus (rotating drum). At 5-min intervals subjects rated their temperature perception, thermal comfort and MS discomfort. During immersion mean skin temperature, rectal temperature, the difference in temperature between the non-immersed right forearm and 3rd finger of the right hand (DeltaTff), oxygen uptake and heart rate were recorded. In the MS-trial, rectal temperature decreased substantially faster (33%, P < 0.01). Also, the DeltaTff response, an index of peripheral vasomotor tone, as well as the oxygen uptake, indicative of the shivering response, were significantly attenuated (P < 0.01 and P < 0.001, respectively) by MS. Thus, MS may predispose individuals to hypothermia by enhancing heat loss and attenuating heat production. This might have significant implications for survival in maritime accidents.
ISSN:1439-6319
1439-6327
1439-6327
DOI:10.1007/s00421-006-0217-6