Loading…

The neuropeptide Y receptors, Y1 and Y2, are transiently and differentially expressed in the developing cerebellum

Neuropeptide Y (NPY), a peptide widely expressed in the brain, acts through the protein G-coupled receptors Y1, Y2 and Y5. In the adult rat, this peptide modulates many important functions such as the control of energy balance and anxiety. Its involvement in brain development has been less investiga...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 2002-01, Vol.113 (4), p.767-777
Main Authors: Neveu, I, Rémy, S, Naveilhan, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuropeptide Y (NPY), a peptide widely expressed in the brain, acts through the protein G-coupled receptors Y1, Y2 and Y5. In the adult rat, this peptide modulates many important functions such as the control of energy balance and anxiety. Its involvement in brain development has been less investigated. In the present study, we have analysed the expression of Y1 and Y2 in the developing rat cerebellum using RNase protection assay. Both receptors were detected in the embryo but at very low levels. Their expression then increased, reaching a peak at postnatal day 10. At later stages, we observed a down-regulation of both Y1 and Y2 mRNA levels. This pattern of expression was delayed in hypothyroid rats, suggesting that the regulation of NPY receptors was strictly related to cerebellar development stages. In situ hybridisation and immunohistochemistry analyses revealed specific localisations of the receptors. Y1 was exclusively expressed by Purkinje cells while Y2 was found mostly in granule cells of the internal granule cell layer. These observations argue in favour of specific roles for Y1 and Y2 in the developing cerebellum. In an initial attempt to characterise these roles, we have determined the number of apoptotic cells in the developing cerebellum of Y2 −/− mice and analysed the effects of NPY on primary cultures of cerebellar granule neurones. Our data showed that the absence of Y2 did not increase cell death in the internal granule cell layer of the developing cerebellum, and that NPY by itself did not prevent the death of differentiated granule cells cultured in serum-free medium. However, we found that co-treatment of the cells by NPY and neuromediators such as NMDA or GABA strongly promoted the survival of granule neurones. Taken together, these observations suggest an involvement of the NPY receptors in cerebellar ontogenesis that remains to be demonstrated in vivo.
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(02)00256-7