Loading…

Novel Perspectives on p53 Function in Neural Stem Cells and Brain Tumors

Malignant glioma is the most common brain tumor in adults and is associated with a very poor prognosis. Mutations in the p53 tumor suppressor gene are frequently detected in gliomas. p53 is well-known for its ability to induce cell cycle arrest, apoptosis, senescence, or differentiation following ce...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Oncology 2011-01, Vol.2011 (2011), p.622-632
Main Authors: Hede, Sanna-Maria, Nazarenko, Inga, Nistér, Monica, Lindström, Mikael S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Malignant glioma is the most common brain tumor in adults and is associated with a very poor prognosis. Mutations in the p53 tumor suppressor gene are frequently detected in gliomas. p53 is well-known for its ability to induce cell cycle arrest, apoptosis, senescence, or differentiation following cellular stress. That the guardian of the genome also controls stem cell self-renewal and suppresses pluripotency adds a novel level of complexity to p53. Exactly how p53 works in order to prevent malignant transformation of cells in the central nervous system remains unclear, and despite being one of the most studied proteins, there is a need to acquire further knowledge about p53 in neural stem cells. Importantly, the characterization of glioma cells with stem-like properties, also known as brain tumor stem cells, has opened up for the development of novel targeted therapies. Here, we give an overview of what is currently known about p53 in brain tumors and neural stem cells. Specifically, we review the literature regarding transformation of adult neural stem cells and, we discuss how the loss of p53 and deregulation of growth factor signaling pathways, such as increased PDGF signaling, lead to brain tumor development. Reactivation of p53 in brain tumor stem cell populations in combination with current treatments for glioma should be further explored and may become a viable future therapeutic approach.
ISSN:1687-8450
1687-8469
1687-8450
DOI:10.1155/2011/852970