Loading…

Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy

[Display omitted] •Mercury methylation rates are higher in younger peatlands.•Mercury methylation was fueled mainly by sulfate reduction in young peatlands.•Methanogensis and syntrophic metabolism get more important for mercury methylation as peatlands age.•Methylmercury degradation shifts from biot...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2020-04, Vol.387, p.121967, Article 121967
Main Authors: Hu, Haiyan, Wang, Baolin, Bravo, Andrea G., Björn, Erik, Skyllberg, Ulf, Amouroux, David, Tessier, Emmanuel, Zopfi, Jakob, Feng, Xinbin, Bishop, Kevin, Nilsson, Mats B., Bertilsson, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c612t-ca1b2d1aaecae8e815a692ab2d08e60f69f80517b61212a67c451f4be3730ea73
cites cdi_FETCH-LOGICAL-c612t-ca1b2d1aaecae8e815a692ab2d08e60f69f80517b61212a67c451f4be3730ea73
container_end_page
container_issue
container_start_page 121967
container_title Journal of hazardous materials
container_volume 387
creator Hu, Haiyan
Wang, Baolin
Bravo, Andrea G.
Björn, Erik
Skyllberg, Ulf
Amouroux, David
Tessier, Emmanuel
Zopfi, Jakob
Feng, Xinbin
Bishop, Kevin
Nilsson, Mats B.
Bertilsson, Stefan
description [Display omitted] •Mercury methylation rates are higher in younger peatlands.•Mercury methylation was fueled mainly by sulfate reduction in young peatlands.•Methanogensis and syntrophic metabolism get more important for mercury methylation as peatlands age.•Methylmercury degradation shifts from biotic to abiotic processes along the peatland chronosequence. Peatlands are globally important ecosystems where inorganic mercury is converted to bioaccumulating and highly toxic methylmercury, resulting in high risks of methylmercury exposure in adjacent aquatic ecosystems. Although biological mercury methylation has been known for decades, there is still a lack of knowledge about the organisms involved in mercury methylation and the drivers controlling their methylating capacity. In order to investigate the metabolisms responsible for mercury methylation and methylmercury degradation as well as the controls of both processes, we studied a chronosequence of boreal peatlands covering fundamentally different biogeochemical conditions. Potential mercury methylation rates decreased with peatland age, being up to 53 times higher in the youngest peatland compared to the oldest. Methylation in young mires was driven by sulfate reduction, while methanogenic and syntrophic metabolisms became more important in older systems. Demethylation rates were also highest in young wetlands, with a gradual shift from biotic to abiotic methylmercury degradation along the chronosequence. Our findings reveal how metabolic shifts drive mercury methylation and its ratio to demethylation as peatlands age.
doi_str_mv 10.1016/j.jhazmat.2019.121967
format article
fullrecord <record><control><sourceid>pubmed_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_104966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389419319211</els_id><sourcerecordid>31901845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-ca1b2d1aaecae8e815a692ab2d08e60f69f80517b61212a67c451f4be3730ea73</originalsourceid><addsrcrecordid>eNqNkt-L1DAQx4so3nr6Jyh9FWzNNG3a-CLL6XnCgg_-eA2z6fSapW3WpF2pf73p9jzwQfRpYPh8JmG-E0XPgaXAQLw-pIcWf_Y4phkDmUIGUpQPog1UJU845-JhtGGc5QmvZH4RPfH-wBiDssgfRxccJIMqLzbR6XNrmtHHZoh7cnpyc6hjO3c4GjvEqJ31Psb4SDh2ONSxbp0drKfvEw2a3sTXzvaxn7oGR4od1ZM-i6M9z8HB3tJA3oQZQfbzMDp7bOen0aMGO0_P7upl9PX6_Zerm2T36cPHq-0u0QKyMdEI-6wGRNJIFVVQoJAZhh6rSLBGyKZiBZT7QEOGotR5AU2-J15yRljyyyhd5_ofdJz26uhMj25WFo3y3bRHtxTlSQHLpRBBePVX4Z35tlXW3appUjkrZckDnvwH3k8KhGRSBv7lyrfY_QHfbHdq6bGsCDExeYLAFit7zsBRcy8AU8sNqIO6uwG13IBabyB4L1YvfKin-t76HXoA3q4Ahc2fDIUdaLOkWRtHelS1Nf944heCtcji</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy</title><source>ScienceDirect Journals</source><creator>Hu, Haiyan ; Wang, Baolin ; Bravo, Andrea G. ; Björn, Erik ; Skyllberg, Ulf ; Amouroux, David ; Tessier, Emmanuel ; Zopfi, Jakob ; Feng, Xinbin ; Bishop, Kevin ; Nilsson, Mats B. ; Bertilsson, Stefan</creator><creatorcontrib>Hu, Haiyan ; Wang, Baolin ; Bravo, Andrea G. ; Björn, Erik ; Skyllberg, Ulf ; Amouroux, David ; Tessier, Emmanuel ; Zopfi, Jakob ; Feng, Xinbin ; Bishop, Kevin ; Nilsson, Mats B. ; Bertilsson, Stefan ; Sveriges lantbruksuniversitet</creatorcontrib><description>[Display omitted] •Mercury methylation rates are higher in younger peatlands.•Mercury methylation was fueled mainly by sulfate reduction in young peatlands.•Methanogensis and syntrophic metabolism get more important for mercury methylation as peatlands age.•Methylmercury degradation shifts from biotic to abiotic processes along the peatland chronosequence. Peatlands are globally important ecosystems where inorganic mercury is converted to bioaccumulating and highly toxic methylmercury, resulting in high risks of methylmercury exposure in adjacent aquatic ecosystems. Although biological mercury methylation has been known for decades, there is still a lack of knowledge about the organisms involved in mercury methylation and the drivers controlling their methylating capacity. In order to investigate the metabolisms responsible for mercury methylation and methylmercury degradation as well as the controls of both processes, we studied a chronosequence of boreal peatlands covering fundamentally different biogeochemical conditions. Potential mercury methylation rates decreased with peatland age, being up to 53 times higher in the youngest peatland compared to the oldest. Methylation in young mires was driven by sulfate reduction, while methanogenic and syntrophic metabolisms became more important in older systems. Demethylation rates were also highest in young wetlands, with a gradual shift from biotic to abiotic methylmercury degradation along the chronosequence. Our findings reveal how metabolic shifts drive mercury methylation and its ratio to demethylation as peatlands age.</description><identifier>ISSN: 0304-3894</identifier><identifier>ISSN: 1873-3336</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2019.121967</identifier><identifier>PMID: 31901845</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biodiversity and Ecology ; Chemical Sciences ; Chronology as Topic ; Chronosequence ; Demethylation ; Environmental Pollutants - chemistry ; Environmental Pollutants - metabolism ; Environmental Sciences ; Mercury ; Mercury - chemistry ; Mercury - metabolism ; Methylation ; Methylmercury Compounds - metabolism ; Miljövetenskap ; Other ; Oxidation-Reduction ; Peatland ; Soil - chemistry ; Soil Microbiology ; Sulfates - chemistry ; Sulfates - metabolism ; Wetlands</subject><ispartof>Journal of hazardous materials, 2020-04, Vol.387, p.121967, Article 121967</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-ca1b2d1aaecae8e815a692ab2d08e60f69f80517b61212a67c451f4be3730ea73</citedby><cites>FETCH-LOGICAL-c612t-ca1b2d1aaecae8e815a692ab2d08e60f69f80517b61212a67c451f4be3730ea73</cites><orcidid>0000-0002-0056-8590 ; 0000-0002-8341-3462 ; 0000-0001-6939-8799 ; 0000-0002-5768-6731 ; 0000-0003-1672-9894 ; 0000-0003-3765-6399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31901845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02500009$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-169099$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-407973$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/104966$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Haiyan</creatorcontrib><creatorcontrib>Wang, Baolin</creatorcontrib><creatorcontrib>Bravo, Andrea G.</creatorcontrib><creatorcontrib>Björn, Erik</creatorcontrib><creatorcontrib>Skyllberg, Ulf</creatorcontrib><creatorcontrib>Amouroux, David</creatorcontrib><creatorcontrib>Tessier, Emmanuel</creatorcontrib><creatorcontrib>Zopfi, Jakob</creatorcontrib><creatorcontrib>Feng, Xinbin</creatorcontrib><creatorcontrib>Bishop, Kevin</creatorcontrib><creatorcontrib>Nilsson, Mats B.</creatorcontrib><creatorcontrib>Bertilsson, Stefan</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>[Display omitted] •Mercury methylation rates are higher in younger peatlands.•Mercury methylation was fueled mainly by sulfate reduction in young peatlands.•Methanogensis and syntrophic metabolism get more important for mercury methylation as peatlands age.•Methylmercury degradation shifts from biotic to abiotic processes along the peatland chronosequence. Peatlands are globally important ecosystems where inorganic mercury is converted to bioaccumulating and highly toxic methylmercury, resulting in high risks of methylmercury exposure in adjacent aquatic ecosystems. Although biological mercury methylation has been known for decades, there is still a lack of knowledge about the organisms involved in mercury methylation and the drivers controlling their methylating capacity. In order to investigate the metabolisms responsible for mercury methylation and methylmercury degradation as well as the controls of both processes, we studied a chronosequence of boreal peatlands covering fundamentally different biogeochemical conditions. Potential mercury methylation rates decreased with peatland age, being up to 53 times higher in the youngest peatland compared to the oldest. Methylation in young mires was driven by sulfate reduction, while methanogenic and syntrophic metabolisms became more important in older systems. Demethylation rates were also highest in young wetlands, with a gradual shift from biotic to abiotic methylmercury degradation along the chronosequence. Our findings reveal how metabolic shifts drive mercury methylation and its ratio to demethylation as peatlands age.</description><subject>Biodiversity and Ecology</subject><subject>Chemical Sciences</subject><subject>Chronology as Topic</subject><subject>Chronosequence</subject><subject>Demethylation</subject><subject>Environmental Pollutants - chemistry</subject><subject>Environmental Pollutants - metabolism</subject><subject>Environmental Sciences</subject><subject>Mercury</subject><subject>Mercury - chemistry</subject><subject>Mercury - metabolism</subject><subject>Methylation</subject><subject>Methylmercury Compounds - metabolism</subject><subject>Miljövetenskap</subject><subject>Other</subject><subject>Oxidation-Reduction</subject><subject>Peatland</subject><subject>Soil - chemistry</subject><subject>Soil Microbiology</subject><subject>Sulfates - chemistry</subject><subject>Sulfates - metabolism</subject><subject>Wetlands</subject><issn>0304-3894</issn><issn>1873-3336</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkt-L1DAQx4so3nr6Jyh9FWzNNG3a-CLL6XnCgg_-eA2z6fSapW3WpF2pf73p9jzwQfRpYPh8JmG-E0XPgaXAQLw-pIcWf_Y4phkDmUIGUpQPog1UJU845-JhtGGc5QmvZH4RPfH-wBiDssgfRxccJIMqLzbR6XNrmtHHZoh7cnpyc6hjO3c4GjvEqJ31Psb4SDh2ONSxbp0drKfvEw2a3sTXzvaxn7oGR4od1ZM-i6M9z8HB3tJA3oQZQfbzMDp7bOen0aMGO0_P7upl9PX6_Zerm2T36cPHq-0u0QKyMdEI-6wGRNJIFVVQoJAZhh6rSLBGyKZiBZT7QEOGotR5AU2-J15yRljyyyhd5_ofdJz26uhMj25WFo3y3bRHtxTlSQHLpRBBePVX4Z35tlXW3appUjkrZckDnvwH3k8KhGRSBv7lyrfY_QHfbHdq6bGsCDExeYLAFit7zsBRcy8AU8sNqIO6uwG13IBabyB4L1YvfKin-t76HXoA3q4Ahc2fDIUdaLOkWRtHelS1Nf944heCtcji</recordid><startdate>20200405</startdate><enddate>20200405</enddate><creator>Hu, Haiyan</creator><creator>Wang, Baolin</creator><creator>Bravo, Andrea G.</creator><creator>Björn, Erik</creator><creator>Skyllberg, Ulf</creator><creator>Amouroux, David</creator><creator>Tessier, Emmanuel</creator><creator>Zopfi, Jakob</creator><creator>Feng, Xinbin</creator><creator>Bishop, Kevin</creator><creator>Nilsson, Mats B.</creator><creator>Bertilsson, Stefan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><scope>ACNBI</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-0056-8590</orcidid><orcidid>https://orcid.org/0000-0002-8341-3462</orcidid><orcidid>https://orcid.org/0000-0001-6939-8799</orcidid><orcidid>https://orcid.org/0000-0002-5768-6731</orcidid><orcidid>https://orcid.org/0000-0003-1672-9894</orcidid><orcidid>https://orcid.org/0000-0003-3765-6399</orcidid></search><sort><creationdate>20200405</creationdate><title>Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy</title><author>Hu, Haiyan ; Wang, Baolin ; Bravo, Andrea G. ; Björn, Erik ; Skyllberg, Ulf ; Amouroux, David ; Tessier, Emmanuel ; Zopfi, Jakob ; Feng, Xinbin ; Bishop, Kevin ; Nilsson, Mats B. ; Bertilsson, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-ca1b2d1aaecae8e815a692ab2d08e60f69f80517b61212a67c451f4be3730ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodiversity and Ecology</topic><topic>Chemical Sciences</topic><topic>Chronology as Topic</topic><topic>Chronosequence</topic><topic>Demethylation</topic><topic>Environmental Pollutants - chemistry</topic><topic>Environmental Pollutants - metabolism</topic><topic>Environmental Sciences</topic><topic>Mercury</topic><topic>Mercury - chemistry</topic><topic>Mercury - metabolism</topic><topic>Methylation</topic><topic>Methylmercury Compounds - metabolism</topic><topic>Miljövetenskap</topic><topic>Other</topic><topic>Oxidation-Reduction</topic><topic>Peatland</topic><topic>Soil - chemistry</topic><topic>Soil Microbiology</topic><topic>Sulfates - chemistry</topic><topic>Sulfates - metabolism</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Haiyan</creatorcontrib><creatorcontrib>Wang, Baolin</creatorcontrib><creatorcontrib>Bravo, Andrea G.</creatorcontrib><creatorcontrib>Björn, Erik</creatorcontrib><creatorcontrib>Skyllberg, Ulf</creatorcontrib><creatorcontrib>Amouroux, David</creatorcontrib><creatorcontrib>Tessier, Emmanuel</creatorcontrib><creatorcontrib>Zopfi, Jakob</creatorcontrib><creatorcontrib>Feng, Xinbin</creatorcontrib><creatorcontrib>Bishop, Kevin</creatorcontrib><creatorcontrib>Nilsson, Mats B.</creatorcontrib><creatorcontrib>Bertilsson, Stefan</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Haiyan</au><au>Wang, Baolin</au><au>Bravo, Andrea G.</au><au>Björn, Erik</au><au>Skyllberg, Ulf</au><au>Amouroux, David</au><au>Tessier, Emmanuel</au><au>Zopfi, Jakob</au><au>Feng, Xinbin</au><au>Bishop, Kevin</au><au>Nilsson, Mats B.</au><au>Bertilsson, Stefan</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2020-04-05</date><risdate>2020</risdate><volume>387</volume><spage>121967</spage><pages>121967-</pages><artnum>121967</artnum><issn>0304-3894</issn><issn>1873-3336</issn><eissn>1873-3336</eissn><abstract>[Display omitted] •Mercury methylation rates are higher in younger peatlands.•Mercury methylation was fueled mainly by sulfate reduction in young peatlands.•Methanogensis and syntrophic metabolism get more important for mercury methylation as peatlands age.•Methylmercury degradation shifts from biotic to abiotic processes along the peatland chronosequence. Peatlands are globally important ecosystems where inorganic mercury is converted to bioaccumulating and highly toxic methylmercury, resulting in high risks of methylmercury exposure in adjacent aquatic ecosystems. Although biological mercury methylation has been known for decades, there is still a lack of knowledge about the organisms involved in mercury methylation and the drivers controlling their methylating capacity. In order to investigate the metabolisms responsible for mercury methylation and methylmercury degradation as well as the controls of both processes, we studied a chronosequence of boreal peatlands covering fundamentally different biogeochemical conditions. Potential mercury methylation rates decreased with peatland age, being up to 53 times higher in the youngest peatland compared to the oldest. Methylation in young mires was driven by sulfate reduction, while methanogenic and syntrophic metabolisms became more important in older systems. Demethylation rates were also highest in young wetlands, with a gradual shift from biotic to abiotic methylmercury degradation along the chronosequence. Our findings reveal how metabolic shifts drive mercury methylation and its ratio to demethylation as peatlands age.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31901845</pmid><doi>10.1016/j.jhazmat.2019.121967</doi><orcidid>https://orcid.org/0000-0002-0056-8590</orcidid><orcidid>https://orcid.org/0000-0002-8341-3462</orcidid><orcidid>https://orcid.org/0000-0001-6939-8799</orcidid><orcidid>https://orcid.org/0000-0002-5768-6731</orcidid><orcidid>https://orcid.org/0000-0003-1672-9894</orcidid><orcidid>https://orcid.org/0000-0003-3765-6399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2020-04, Vol.387, p.121967, Article 121967
issn 0304-3894
1873-3336
1873-3336
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_104966
source ScienceDirect Journals
subjects Biodiversity and Ecology
Chemical Sciences
Chronology as Topic
Chronosequence
Demethylation
Environmental Pollutants - chemistry
Environmental Pollutants - metabolism
Environmental Sciences
Mercury
Mercury - chemistry
Mercury - metabolism
Methylation
Methylmercury Compounds - metabolism
Miljövetenskap
Other
Oxidation-Reduction
Peatland
Soil - chemistry
Soil Microbiology
Sulfates - chemistry
Sulfates - metabolism
Wetlands
title Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shifts%20in%20mercury%20methylation%20across%20a%20peatland%20chronosequence:%20From%20sulfate%20reduction%20to%20methanogenesis%20and%20syntrophy&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Hu,%20Haiyan&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-04-05&rft.volume=387&rft.spage=121967&rft.pages=121967-&rft.artnum=121967&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2019.121967&rft_dat=%3Cpubmed_swepu%3E31901845%3C/pubmed_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-ca1b2d1aaecae8e815a692ab2d08e60f69f80517b61212a67c451f4be3730ea73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31901845&rfr_iscdi=true