Loading…
Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies
• Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention. • Us...
Saved in:
Published in: | The New phytologist 2020-11, Vol.228 (4), p.1269-1282 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973 |
---|---|
cites | cdi_FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973 |
container_end_page | 1282 |
container_issue | 4 |
container_start_page | 1269 |
container_title | The New phytologist |
container_volume | 228 |
creator | Henneron, Ludovic Kardol, Paul Wardle, David A. Cros, Camille Fontaine, Sébastien |
description | • Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention.
• Using a dual 13C/15N labeling approach in a ‘common garden’ glasshouse experiment, we investigated how the economic strategies of 12 grassland plant species (graminoids, forbs and legumes) drive soil nitrogen (N) cycling via rhizosphere processes, and how this in turn affects plant N acquisition and growth.
• Acquisitive species with higher photosynthesis, carbon rhizodeposition and N uptake than conservative species induced a stronger acceleration of soil N cycling through rhizosphere priming of SOM decomposition. This allowed them to take up larger amounts of N and allocate it above ground to promote photosynthesis, thereby sustaining their faster growth. The N₂-fixation ability of legumes enhanced rhizosphere priming by promoting photosynthesis and rhizodeposition.
• Our study demonstrates that the economic strategies of plant species regulate a plant–soil carbon–nitrogen feedback operating through the rhizosphere. These findings provide novel mechanistic insights into how plant species with contrasting economic strategies sustain their nutrition and growth through regulating the cycling of nutrients by soil microbes in their rhizosphere. |
doi_str_mv | 10.1111/nph.16760 |
format | article |
fullrecord | <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_107115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26968174</jstor_id><sourcerecordid>26968174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973</originalsourceid><addsrcrecordid>eNp1kVFrFDEUhYNY7Fp98AcoA75YcLb3JjPJ5LEUdYVFRRR8C9lM0p0lOxmTHcv668122i0K5uWQy3fOTTiEvECYYz4X_bCeIxccHpEZVlyWDTLxmMwAaFPyiv84JU9T2gCArDl9Qk4ZzVoDn5G3X9fd75CGtY22MKHfxeCL4IoUOl_0Xb5e274we-O7_voZOXHaJ_v8Ts_I9_fvvl0tyuXnDx-vLpel4SihpNg6ytqKaQ2GNasWmHENUGROuoYZkae6oaI1bUXr1rWuMlYCSsFlw6VgZ2Q-5aYbO4wrNcRuq-NeBd2p5MeVjgdRySoEgVhnw_lkWGv_F724XKrDDBhQSgF-YWbfTOwQw8_Rpp3adslY73Vvw5gUrbCmUtYCMvr6H3QTxtjnr2eqpoA10uphuYkhpWjd8QUI6tCPyv2o234y--oucVxtbXsk7wvJwMUE3HTe7v-fpD59WdxHvpwcm7QL8eigXPIGRcX-AKSpoMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452015124</pqid></control><display><type>article</type><title>Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Henneron, Ludovic ; Kardol, Paul ; Wardle, David A. ; Cros, Camille ; Fontaine, Sébastien</creator><creatorcontrib>Henneron, Ludovic ; Kardol, Paul ; Wardle, David A. ; Cros, Camille ; Fontaine, Sébastien ; Sveriges lantbruksuniversitet</creatorcontrib><description>• Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention.
• Using a dual 13C/15N labeling approach in a ‘common garden’ glasshouse experiment, we investigated how the economic strategies of 12 grassland plant species (graminoids, forbs and legumes) drive soil nitrogen (N) cycling via rhizosphere processes, and how this in turn affects plant N acquisition and growth.
• Acquisitive species with higher photosynthesis, carbon rhizodeposition and N uptake than conservative species induced a stronger acceleration of soil N cycling through rhizosphere priming of SOM decomposition. This allowed them to take up larger amounts of N and allocate it above ground to promote photosynthesis, thereby sustaining their faster growth. The N₂-fixation ability of legumes enhanced rhizosphere priming by promoting photosynthesis and rhizodeposition.
• Our study demonstrates that the economic strategies of plant species regulate a plant–soil carbon–nitrogen feedback operating through the rhizosphere. These findings provide novel mechanistic insights into how plant species with contrasting economic strategies sustain their nutrition and growth through regulating the cycling of nutrients by soil microbes in their rhizosphere.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16760</identifier><identifier>PMID: 32562506</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Acquisition ; Agricultural sciences ; Botanics ; Botanik ; Botany ; Carbon ; Cycles ; Decomposition ; Economics ; Ecosystem ; Flowers & plants ; Forbs ; Grasslands ; Greenhouses ; Growth ; leaf and root traits ; Legumes ; Life Sciences ; Mineral nutrients ; Nitrogen ; Nitrogen - analysis ; Nitrogen cycle ; Nitrogen isotopes ; Nutrient cycles ; nutrient cycling ; Nutrients ; Nutrition ; Organic matter ; Organic soils ; Photosynthesis ; plant economics spectrum ; Plant species ; Plants ; plant–soil interactions ; Priming ; rhizodeposition ; Rhizosphere ; rhizosphere priming effect ; Soil ; Soil Microbiology ; Soil microorganisms ; Soil organic matter ; Soil study ; Soils ; Species ; Terrestrial environments ; Uptake ; Vegetal Biology</subject><ispartof>The New phytologist, 2020-11, Vol.228 (4), p.1269-1282</ispartof><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Foundation</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Foundation.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973</citedby><cites>FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973</cites><orcidid>0000-0001-7645-0030 ; 0000-0001-7065-3435 ; 0000-0002-3979-0543 ; 0000-0002-0324-5279 ; 0000-0002-0476-7335 ; 0000-0003-1404-0700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26968174$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26968174$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32562506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03022200$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/107115$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Henneron, Ludovic</creatorcontrib><creatorcontrib>Kardol, Paul</creatorcontrib><creatorcontrib>Wardle, David A.</creatorcontrib><creatorcontrib>Cros, Camille</creatorcontrib><creatorcontrib>Fontaine, Sébastien</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention.
• Using a dual 13C/15N labeling approach in a ‘common garden’ glasshouse experiment, we investigated how the economic strategies of 12 grassland plant species (graminoids, forbs and legumes) drive soil nitrogen (N) cycling via rhizosphere processes, and how this in turn affects plant N acquisition and growth.
• Acquisitive species with higher photosynthesis, carbon rhizodeposition and N uptake than conservative species induced a stronger acceleration of soil N cycling through rhizosphere priming of SOM decomposition. This allowed them to take up larger amounts of N and allocate it above ground to promote photosynthesis, thereby sustaining their faster growth. The N₂-fixation ability of legumes enhanced rhizosphere priming by promoting photosynthesis and rhizodeposition.
• Our study demonstrates that the economic strategies of plant species regulate a plant–soil carbon–nitrogen feedback operating through the rhizosphere. These findings provide novel mechanistic insights into how plant species with contrasting economic strategies sustain their nutrition and growth through regulating the cycling of nutrients by soil microbes in their rhizosphere.</description><subject>Acquisition</subject><subject>Agricultural sciences</subject><subject>Botanics</subject><subject>Botanik</subject><subject>Botany</subject><subject>Carbon</subject><subject>Cycles</subject><subject>Decomposition</subject><subject>Economics</subject><subject>Ecosystem</subject><subject>Flowers & plants</subject><subject>Forbs</subject><subject>Grasslands</subject><subject>Greenhouses</subject><subject>Growth</subject><subject>leaf and root traits</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Mineral nutrients</subject><subject>Nitrogen</subject><subject>Nitrogen - analysis</subject><subject>Nitrogen cycle</subject><subject>Nitrogen isotopes</subject><subject>Nutrient cycles</subject><subject>nutrient cycling</subject><subject>Nutrients</subject><subject>Nutrition</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Photosynthesis</subject><subject>plant economics spectrum</subject><subject>Plant species</subject><subject>Plants</subject><subject>plant–soil interactions</subject><subject>Priming</subject><subject>rhizodeposition</subject><subject>Rhizosphere</subject><subject>rhizosphere priming effect</subject><subject>Soil</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soil organic matter</subject><subject>Soil study</subject><subject>Soils</subject><subject>Species</subject><subject>Terrestrial environments</subject><subject>Uptake</subject><subject>Vegetal Biology</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kVFrFDEUhYNY7Fp98AcoA75YcLb3JjPJ5LEUdYVFRRR8C9lM0p0lOxmTHcv668122i0K5uWQy3fOTTiEvECYYz4X_bCeIxccHpEZVlyWDTLxmMwAaFPyiv84JU9T2gCArDl9Qk4ZzVoDn5G3X9fd75CGtY22MKHfxeCL4IoUOl_0Xb5e274we-O7_voZOXHaJ_v8Ts_I9_fvvl0tyuXnDx-vLpel4SihpNg6ytqKaQ2GNasWmHENUGROuoYZkae6oaI1bUXr1rWuMlYCSsFlw6VgZ2Q-5aYbO4wrNcRuq-NeBd2p5MeVjgdRySoEgVhnw_lkWGv_F724XKrDDBhQSgF-YWbfTOwQw8_Rpp3adslY73Vvw5gUrbCmUtYCMvr6H3QTxtjnr2eqpoA10uphuYkhpWjd8QUI6tCPyv2o234y--oucVxtbXsk7wvJwMUE3HTe7v-fpD59WdxHvpwcm7QL8eigXPIGRcX-AKSpoMY</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Henneron, Ludovic</creator><creator>Kardol, Paul</creator><creator>Wardle, David A.</creator><creator>Cros, Camille</creator><creator>Fontaine, Sébastien</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-7645-0030</orcidid><orcidid>https://orcid.org/0000-0001-7065-3435</orcidid><orcidid>https://orcid.org/0000-0002-3979-0543</orcidid><orcidid>https://orcid.org/0000-0002-0324-5279</orcidid><orcidid>https://orcid.org/0000-0002-0476-7335</orcidid><orcidid>https://orcid.org/0000-0003-1404-0700</orcidid></search><sort><creationdate>202011</creationdate><title>Rhizosphere control of soil nitrogen cycling</title><author>Henneron, Ludovic ; Kardol, Paul ; Wardle, David A. ; Cros, Camille ; Fontaine, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acquisition</topic><topic>Agricultural sciences</topic><topic>Botanics</topic><topic>Botanik</topic><topic>Botany</topic><topic>Carbon</topic><topic>Cycles</topic><topic>Decomposition</topic><topic>Economics</topic><topic>Ecosystem</topic><topic>Flowers & plants</topic><topic>Forbs</topic><topic>Grasslands</topic><topic>Greenhouses</topic><topic>Growth</topic><topic>leaf and root traits</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Mineral nutrients</topic><topic>Nitrogen</topic><topic>Nitrogen - analysis</topic><topic>Nitrogen cycle</topic><topic>Nitrogen isotopes</topic><topic>Nutrient cycles</topic><topic>nutrient cycling</topic><topic>Nutrients</topic><topic>Nutrition</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Photosynthesis</topic><topic>plant economics spectrum</topic><topic>Plant species</topic><topic>Plants</topic><topic>plant–soil interactions</topic><topic>Priming</topic><topic>rhizodeposition</topic><topic>Rhizosphere</topic><topic>rhizosphere priming effect</topic><topic>Soil</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soil organic matter</topic><topic>Soil study</topic><topic>Soils</topic><topic>Species</topic><topic>Terrestrial environments</topic><topic>Uptake</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henneron, Ludovic</creatorcontrib><creatorcontrib>Kardol, Paul</creatorcontrib><creatorcontrib>Wardle, David A.</creatorcontrib><creatorcontrib>Cros, Camille</creatorcontrib><creatorcontrib>Fontaine, Sébastien</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henneron, Ludovic</au><au>Kardol, Paul</au><au>Wardle, David A.</au><au>Cros, Camille</au><au>Fontaine, Sébastien</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-11</date><risdate>2020</risdate><volume>228</volume><issue>4</issue><spage>1269</spage><epage>1282</epage><pages>1269-1282</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>• Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention.
• Using a dual 13C/15N labeling approach in a ‘common garden’ glasshouse experiment, we investigated how the economic strategies of 12 grassland plant species (graminoids, forbs and legumes) drive soil nitrogen (N) cycling via rhizosphere processes, and how this in turn affects plant N acquisition and growth.
• Acquisitive species with higher photosynthesis, carbon rhizodeposition and N uptake than conservative species induced a stronger acceleration of soil N cycling through rhizosphere priming of SOM decomposition. This allowed them to take up larger amounts of N and allocate it above ground to promote photosynthesis, thereby sustaining their faster growth. The N₂-fixation ability of legumes enhanced rhizosphere priming by promoting photosynthesis and rhizodeposition.
• Our study demonstrates that the economic strategies of plant species regulate a plant–soil carbon–nitrogen feedback operating through the rhizosphere. These findings provide novel mechanistic insights into how plant species with contrasting economic strategies sustain their nutrition and growth through regulating the cycling of nutrients by soil microbes in their rhizosphere.</abstract><cop>England</cop><pub>Wiley</pub><pmid>32562506</pmid><doi>10.1111/nph.16760</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7645-0030</orcidid><orcidid>https://orcid.org/0000-0001-7065-3435</orcidid><orcidid>https://orcid.org/0000-0002-3979-0543</orcidid><orcidid>https://orcid.org/0000-0002-0324-5279</orcidid><orcidid>https://orcid.org/0000-0002-0476-7335</orcidid><orcidid>https://orcid.org/0000-0003-1404-0700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2020-11, Vol.228 (4), p.1269-1282 |
issn | 0028-646X 1469-8137 1469-8137 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_107115 |
source | JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection |
subjects | Acquisition Agricultural sciences Botanics Botanik Botany Carbon Cycles Decomposition Economics Ecosystem Flowers & plants Forbs Grasslands Greenhouses Growth leaf and root traits Legumes Life Sciences Mineral nutrients Nitrogen Nitrogen - analysis Nitrogen cycle Nitrogen isotopes Nutrient cycles nutrient cycling Nutrients Nutrition Organic matter Organic soils Photosynthesis plant economics spectrum Plant species Plants plant–soil interactions Priming rhizodeposition Rhizosphere rhizosphere priming effect Soil Soil Microbiology Soil microorganisms Soil organic matter Soil study Soils Species Terrestrial environments Uptake Vegetal Biology |
title | Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhizosphere%20control%20of%20soil%20nitrogen%20cycling:%20a%20key%20component%20of%20plant%20economic%20strategies&rft.jtitle=The%20New%20phytologist&rft.au=Henneron,%20Ludovic&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-11&rft.volume=228&rft.issue=4&rft.spage=1269&rft.epage=1282&rft.pages=1269-1282&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16760&rft_dat=%3Cjstor_swepu%3E26968174%3C/jstor_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2452015124&rft_id=info:pmid/32562506&rft_jstor_id=26968174&rfr_iscdi=true |