Loading…

Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies

• Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention. • Us...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2020-11, Vol.228 (4), p.1269-1282
Main Authors: Henneron, Ludovic, Kardol, Paul, Wardle, David A., Cros, Camille, Fontaine, Sébastien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973
cites cdi_FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973
container_end_page 1282
container_issue 4
container_start_page 1269
container_title The New phytologist
container_volume 228
creator Henneron, Ludovic
Kardol, Paul
Wardle, David A.
Cros, Camille
Fontaine, Sébastien
description • Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention. • Using a dual 13C/15N labeling approach in a ‘common garden’ glasshouse experiment, we investigated how the economic strategies of 12 grassland plant species (graminoids, forbs and legumes) drive soil nitrogen (N) cycling via rhizosphere processes, and how this in turn affects plant N acquisition and growth. • Acquisitive species with higher photosynthesis, carbon rhizodeposition and N uptake than conservative species induced a stronger acceleration of soil N cycling through rhizosphere priming of SOM decomposition. This allowed them to take up larger amounts of N and allocate it above ground to promote photosynthesis, thereby sustaining their faster growth. The N₂-fixation ability of legumes enhanced rhizosphere priming by promoting photosynthesis and rhizodeposition. • Our study demonstrates that the economic strategies of plant species regulate a plant–soil carbon–nitrogen feedback operating through the rhizosphere. These findings provide novel mechanistic insights into how plant species with contrasting economic strategies sustain their nutrition and growth through regulating the cycling of nutrients by soil microbes in their rhizosphere.
doi_str_mv 10.1111/nph.16760
format article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_107115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26968174</jstor_id><sourcerecordid>26968174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973</originalsourceid><addsrcrecordid>eNp1kVFrFDEUhYNY7Fp98AcoA75YcLb3JjPJ5LEUdYVFRRR8C9lM0p0lOxmTHcv668122i0K5uWQy3fOTTiEvECYYz4X_bCeIxccHpEZVlyWDTLxmMwAaFPyiv84JU9T2gCArDl9Qk4ZzVoDn5G3X9fd75CGtY22MKHfxeCL4IoUOl_0Xb5e274we-O7_voZOXHaJ_v8Ts_I9_fvvl0tyuXnDx-vLpel4SihpNg6ytqKaQ2GNasWmHENUGROuoYZkae6oaI1bUXr1rWuMlYCSsFlw6VgZ2Q-5aYbO4wrNcRuq-NeBd2p5MeVjgdRySoEgVhnw_lkWGv_F724XKrDDBhQSgF-YWbfTOwQw8_Rpp3adslY73Vvw5gUrbCmUtYCMvr6H3QTxtjnr2eqpoA10uphuYkhpWjd8QUI6tCPyv2o234y--oucVxtbXsk7wvJwMUE3HTe7v-fpD59WdxHvpwcm7QL8eigXPIGRcX-AKSpoMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452015124</pqid></control><display><type>article</type><title>Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Henneron, Ludovic ; Kardol, Paul ; Wardle, David A. ; Cros, Camille ; Fontaine, Sébastien</creator><creatorcontrib>Henneron, Ludovic ; Kardol, Paul ; Wardle, David A. ; Cros, Camille ; Fontaine, Sébastien ; Sveriges lantbruksuniversitet</creatorcontrib><description>• Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention. • Using a dual 13C/15N labeling approach in a ‘common garden’ glasshouse experiment, we investigated how the economic strategies of 12 grassland plant species (graminoids, forbs and legumes) drive soil nitrogen (N) cycling via rhizosphere processes, and how this in turn affects plant N acquisition and growth. • Acquisitive species with higher photosynthesis, carbon rhizodeposition and N uptake than conservative species induced a stronger acceleration of soil N cycling through rhizosphere priming of SOM decomposition. This allowed them to take up larger amounts of N and allocate it above ground to promote photosynthesis, thereby sustaining their faster growth. The N₂-fixation ability of legumes enhanced rhizosphere priming by promoting photosynthesis and rhizodeposition. • Our study demonstrates that the economic strategies of plant species regulate a plant–soil carbon–nitrogen feedback operating through the rhizosphere. These findings provide novel mechanistic insights into how plant species with contrasting economic strategies sustain their nutrition and growth through regulating the cycling of nutrients by soil microbes in their rhizosphere.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16760</identifier><identifier>PMID: 32562506</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Acquisition ; Agricultural sciences ; Botanics ; Botanik ; Botany ; Carbon ; Cycles ; Decomposition ; Economics ; Ecosystem ; Flowers &amp; plants ; Forbs ; Grasslands ; Greenhouses ; Growth ; leaf and root traits ; Legumes ; Life Sciences ; Mineral nutrients ; Nitrogen ; Nitrogen - analysis ; Nitrogen cycle ; Nitrogen isotopes ; Nutrient cycles ; nutrient cycling ; Nutrients ; Nutrition ; Organic matter ; Organic soils ; Photosynthesis ; plant economics spectrum ; Plant species ; Plants ; plant–soil interactions ; Priming ; rhizodeposition ; Rhizosphere ; rhizosphere priming effect ; Soil ; Soil Microbiology ; Soil microorganisms ; Soil organic matter ; Soil study ; Soils ; Species ; Terrestrial environments ; Uptake ; Vegetal Biology</subject><ispartof>The New phytologist, 2020-11, Vol.228 (4), p.1269-1282</ispartof><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Foundation</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Foundation.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973</citedby><cites>FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973</cites><orcidid>0000-0001-7645-0030 ; 0000-0001-7065-3435 ; 0000-0002-3979-0543 ; 0000-0002-0324-5279 ; 0000-0002-0476-7335 ; 0000-0003-1404-0700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26968174$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26968174$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32562506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03022200$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/107115$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Henneron, Ludovic</creatorcontrib><creatorcontrib>Kardol, Paul</creatorcontrib><creatorcontrib>Wardle, David A.</creatorcontrib><creatorcontrib>Cros, Camille</creatorcontrib><creatorcontrib>Fontaine, Sébastien</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention. • Using a dual 13C/15N labeling approach in a ‘common garden’ glasshouse experiment, we investigated how the economic strategies of 12 grassland plant species (graminoids, forbs and legumes) drive soil nitrogen (N) cycling via rhizosphere processes, and how this in turn affects plant N acquisition and growth. • Acquisitive species with higher photosynthesis, carbon rhizodeposition and N uptake than conservative species induced a stronger acceleration of soil N cycling through rhizosphere priming of SOM decomposition. This allowed them to take up larger amounts of N and allocate it above ground to promote photosynthesis, thereby sustaining their faster growth. The N₂-fixation ability of legumes enhanced rhizosphere priming by promoting photosynthesis and rhizodeposition. • Our study demonstrates that the economic strategies of plant species regulate a plant–soil carbon–nitrogen feedback operating through the rhizosphere. These findings provide novel mechanistic insights into how plant species with contrasting economic strategies sustain their nutrition and growth through regulating the cycling of nutrients by soil microbes in their rhizosphere.</description><subject>Acquisition</subject><subject>Agricultural sciences</subject><subject>Botanics</subject><subject>Botanik</subject><subject>Botany</subject><subject>Carbon</subject><subject>Cycles</subject><subject>Decomposition</subject><subject>Economics</subject><subject>Ecosystem</subject><subject>Flowers &amp; plants</subject><subject>Forbs</subject><subject>Grasslands</subject><subject>Greenhouses</subject><subject>Growth</subject><subject>leaf and root traits</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Mineral nutrients</subject><subject>Nitrogen</subject><subject>Nitrogen - analysis</subject><subject>Nitrogen cycle</subject><subject>Nitrogen isotopes</subject><subject>Nutrient cycles</subject><subject>nutrient cycling</subject><subject>Nutrients</subject><subject>Nutrition</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Photosynthesis</subject><subject>plant economics spectrum</subject><subject>Plant species</subject><subject>Plants</subject><subject>plant–soil interactions</subject><subject>Priming</subject><subject>rhizodeposition</subject><subject>Rhizosphere</subject><subject>rhizosphere priming effect</subject><subject>Soil</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soil organic matter</subject><subject>Soil study</subject><subject>Soils</subject><subject>Species</subject><subject>Terrestrial environments</subject><subject>Uptake</subject><subject>Vegetal Biology</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kVFrFDEUhYNY7Fp98AcoA75YcLb3JjPJ5LEUdYVFRRR8C9lM0p0lOxmTHcv668122i0K5uWQy3fOTTiEvECYYz4X_bCeIxccHpEZVlyWDTLxmMwAaFPyiv84JU9T2gCArDl9Qk4ZzVoDn5G3X9fd75CGtY22MKHfxeCL4IoUOl_0Xb5e274we-O7_voZOXHaJ_v8Ts_I9_fvvl0tyuXnDx-vLpel4SihpNg6ytqKaQ2GNasWmHENUGROuoYZkae6oaI1bUXr1rWuMlYCSsFlw6VgZ2Q-5aYbO4wrNcRuq-NeBd2p5MeVjgdRySoEgVhnw_lkWGv_F724XKrDDBhQSgF-YWbfTOwQw8_Rpp3adslY73Vvw5gUrbCmUtYCMvr6H3QTxtjnr2eqpoA10uphuYkhpWjd8QUI6tCPyv2o234y--oucVxtbXsk7wvJwMUE3HTe7v-fpD59WdxHvpwcm7QL8eigXPIGRcX-AKSpoMY</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Henneron, Ludovic</creator><creator>Kardol, Paul</creator><creator>Wardle, David A.</creator><creator>Cros, Camille</creator><creator>Fontaine, Sébastien</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-7645-0030</orcidid><orcidid>https://orcid.org/0000-0001-7065-3435</orcidid><orcidid>https://orcid.org/0000-0002-3979-0543</orcidid><orcidid>https://orcid.org/0000-0002-0324-5279</orcidid><orcidid>https://orcid.org/0000-0002-0476-7335</orcidid><orcidid>https://orcid.org/0000-0003-1404-0700</orcidid></search><sort><creationdate>202011</creationdate><title>Rhizosphere control of soil nitrogen cycling</title><author>Henneron, Ludovic ; Kardol, Paul ; Wardle, David A. ; Cros, Camille ; Fontaine, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acquisition</topic><topic>Agricultural sciences</topic><topic>Botanics</topic><topic>Botanik</topic><topic>Botany</topic><topic>Carbon</topic><topic>Cycles</topic><topic>Decomposition</topic><topic>Economics</topic><topic>Ecosystem</topic><topic>Flowers &amp; plants</topic><topic>Forbs</topic><topic>Grasslands</topic><topic>Greenhouses</topic><topic>Growth</topic><topic>leaf and root traits</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Mineral nutrients</topic><topic>Nitrogen</topic><topic>Nitrogen - analysis</topic><topic>Nitrogen cycle</topic><topic>Nitrogen isotopes</topic><topic>Nutrient cycles</topic><topic>nutrient cycling</topic><topic>Nutrients</topic><topic>Nutrition</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Photosynthesis</topic><topic>plant economics spectrum</topic><topic>Plant species</topic><topic>Plants</topic><topic>plant–soil interactions</topic><topic>Priming</topic><topic>rhizodeposition</topic><topic>Rhizosphere</topic><topic>rhizosphere priming effect</topic><topic>Soil</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soil organic matter</topic><topic>Soil study</topic><topic>Soils</topic><topic>Species</topic><topic>Terrestrial environments</topic><topic>Uptake</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henneron, Ludovic</creatorcontrib><creatorcontrib>Kardol, Paul</creatorcontrib><creatorcontrib>Wardle, David A.</creatorcontrib><creatorcontrib>Cros, Camille</creatorcontrib><creatorcontrib>Fontaine, Sébastien</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henneron, Ludovic</au><au>Kardol, Paul</au><au>Wardle, David A.</au><au>Cros, Camille</au><au>Fontaine, Sébastien</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-11</date><risdate>2020</risdate><volume>228</volume><issue>4</issue><spage>1269</spage><epage>1282</epage><pages>1269-1282</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>• Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention. • Using a dual 13C/15N labeling approach in a ‘common garden’ glasshouse experiment, we investigated how the economic strategies of 12 grassland plant species (graminoids, forbs and legumes) drive soil nitrogen (N) cycling via rhizosphere processes, and how this in turn affects plant N acquisition and growth. • Acquisitive species with higher photosynthesis, carbon rhizodeposition and N uptake than conservative species induced a stronger acceleration of soil N cycling through rhizosphere priming of SOM decomposition. This allowed them to take up larger amounts of N and allocate it above ground to promote photosynthesis, thereby sustaining their faster growth. The N₂-fixation ability of legumes enhanced rhizosphere priming by promoting photosynthesis and rhizodeposition. • Our study demonstrates that the economic strategies of plant species regulate a plant–soil carbon–nitrogen feedback operating through the rhizosphere. These findings provide novel mechanistic insights into how plant species with contrasting economic strategies sustain their nutrition and growth through regulating the cycling of nutrients by soil microbes in their rhizosphere.</abstract><cop>England</cop><pub>Wiley</pub><pmid>32562506</pmid><doi>10.1111/nph.16760</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7645-0030</orcidid><orcidid>https://orcid.org/0000-0001-7065-3435</orcidid><orcidid>https://orcid.org/0000-0002-3979-0543</orcidid><orcidid>https://orcid.org/0000-0002-0324-5279</orcidid><orcidid>https://orcid.org/0000-0002-0476-7335</orcidid><orcidid>https://orcid.org/0000-0003-1404-0700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2020-11, Vol.228 (4), p.1269-1282
issn 0028-646X
1469-8137
1469-8137
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_107115
source JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects Acquisition
Agricultural sciences
Botanics
Botanik
Botany
Carbon
Cycles
Decomposition
Economics
Ecosystem
Flowers & plants
Forbs
Grasslands
Greenhouses
Growth
leaf and root traits
Legumes
Life Sciences
Mineral nutrients
Nitrogen
Nitrogen - analysis
Nitrogen cycle
Nitrogen isotopes
Nutrient cycles
nutrient cycling
Nutrients
Nutrition
Organic matter
Organic soils
Photosynthesis
plant economics spectrum
Plant species
Plants
plant–soil interactions
Priming
rhizodeposition
Rhizosphere
rhizosphere priming effect
Soil
Soil Microbiology
Soil microorganisms
Soil organic matter
Soil study
Soils
Species
Terrestrial environments
Uptake
Vegetal Biology
title Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhizosphere%20control%20of%20soil%20nitrogen%20cycling:%20a%20key%20component%20of%20plant%20economic%20strategies&rft.jtitle=The%20New%20phytologist&rft.au=Henneron,%20Ludovic&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-11&rft.volume=228&rft.issue=4&rft.spage=1269&rft.epage=1282&rft.pages=1269-1282&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16760&rft_dat=%3Cjstor_swepu%3E26968174%3C/jstor_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6190-21df23d43aa0c38bd03cf80213f9f83c70c3a827dcd425dfdf4ce901976986973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2452015124&rft_id=info:pmid/32562506&rft_jstor_id=26968174&rfr_iscdi=true